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Abstract  37 

Context: Patients with pheochromocytoma (pheo) show presence of multilocular adipocytes that 38 

express uncoupling protein (UCP) 1 within periadrenal (pADR) and omental (OME) fat depots. It 39 

has been hypothesized that this is due to adrenergic stimulation by catecholamines produced by 40 

the pheo tumors.  41 

Objective: To characterize the prevalence and respiratory activity of brown-like adipocytes 42 

within pADR, OME and subcutaneous (SC) fat depots in human adult pheo patients.  43 

Design: This was an observational cohort study. 44 

Setting: University hospital. 45 

Patients: We studied 46 patients who underwent surgery for benign adrenal tumors (21pheos and 46 

25 controls with adrenocortical adenomas). 47 

Main outcome measure: We characterized adipocyte browning in pADR, SC, and OME fat 48 

depots for histological and immunohistological features, mitochondrial respiration rate, and gene 49 

expression. We also determined circulating levels of catecholamines and other browning-related 50 

hormones. 51 

Results: 11 of 21 pheo pADR adipose samples, but only 1 of 25 pADR samples from control 52 

patients, exhibited multilocular adipocytes. The pADR browning phenotype was associated with 53 

higher plasma catecholamines and raised UCP1. Mitochondria from multilocular pADR fat of 54 

pheo patients exhibited increased rates of coupled and uncoupled respiration. Global gene 55 

expression analysis in pADR fat revealed enrichment in -oxidation genes in pheo patients with 56 

multilocular adipocytes. No SC or OME fat depots exhibited aspects of browning. 57 

Conclusion: Browning of the pADR depot occurred in half of pheo patients and was associated 58 

with increased catecholamines and mitochondrial activity. No browning was detected in other fat 59 

depots, suggesting that other factors are required to promote browning in these depots. 60 

  61 
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Introduction 62 

Evidence for the presence of functional brown adipose tissue (BAT) in humans (1–4) rekindled 63 

research into the proposal made more than 30 years earlier that the high fat-oxidizing, energy-64 

expending capacity of BAT might be exploited to treat obesity (5). The hallmark property of BAT 65 

that promotes energy expenditure is the expression of uncoupling protein (UCP)1, a 66 

mitochondrial transporter that creates proton leaks across the inner mitochondrial membrane, 67 

leading to the dissipation of energy as heat (6). Positron emission tomography-computed 68 

tomography (PET/CT) imaging revealed that fat depots in the supraclavicular region exhibit high 69 

[18F]-fluorodeoxyglucose uptake, suggesting high metabolic activity (2–4) that was increased 70 

upon cold exposure (4). Potential strategies to increase energy expenditure include activation of 71 

established BAT depots or induction of brown adipocyte progenitors within white adipose tissue 72 

(WAT) depots using pharmacological or environmental stimuli (7–9). Thus far, there is limited 73 

evidence regarding whether humans have the potential for appreciable induction of metabolically 74 

active brown adipocytes within WAT. 75 

Studies in mice have revealed that “classical” brown adipocytes from the interscapular 76 

adipose depot are derived from a cell lineage that is distinct from white adipocytes. Brown 77 

adipocytes derive from a Myf5+ lineage, whereas brown-like adipocytes that are induced within 78 

WAT (referred to as “beige” or “brite” cells) originate preferentially from Myf5– progenitor cells 79 

(10). Brown and beige adipocytes have distinct molecular and developmental characteristics, but 80 

the mitochondrial and regulatory differences are not fully understood. In humans, fat depots that 81 

exhibit a brown/beige gene expression signature include the supraclavicular, paravertebral, 82 

perirenal and epicardial fat depots. These fat depots appear to be a mixture of brown and/or beige 83 

adipocytes embedded within WAT (7,11–15). The identification of specific markers for brown vs. 84 

beige adipocytes has been difficult due to a lack of pure brown or beige fat samples, as well as 85 

possible differences between humans and mice.  86 
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Pheochromocytoma (pheo) is a catecholamine-secreting neoplasm arising primarily from 87 

the adrenal medulla or within paragangliomas (16). Multilocular adipocytes with UCP1 88 

expression have been detected in pheo patients in perirenal fat (17–20) and OME fat (21,22), but 89 

not in subcutaneous (SC) adipose tissue (19,22), These studies have been constrained by very 90 

small samples sizes. In addition, the browning in perirenal and OME fat does not seem to occur in 91 

all pheo patients, and may be as low as 50-60% (18,21). At present, it is unknown whether the 92 

brown-like adipocytes that occur in WAT of some pheo patients exhibit metabolic changes that 93 

are characteristic of brown adipocytes, such as increased mitochondrial function and uncoupled 94 

respiration. 95 

In the present study, we have characterized multiple WAT depots from pheo subjects and 96 

control subjects with non-catecholamine secreting adrenal tumors i) to determine the prevalence 97 

of browning in different anatomical WAT depots; and ii) to determine whether pheo-associated 98 

WAT browning is associated with increased mitochondrial respiration activity. 99 

 100 

 101 

Materials and Methods 102 

Human subjects 103 

The study protocol was reviewed and approved by the University of California Los 104 

Angeles Medical Institutional Review Board. Each patient provided written consent after the 105 

study goals, side effects and tissue sampling procedure were explained in detail. Patients in the 106 

experimental group had sporadic unilateral benign adrenal pheos (i.e., no family history of a 107 

pheo). Pheo patients were routinely prepared pre-operatively with a 2-4 week course of the long-108 

acting α-adrenergic receptor blocking drug phenoxybenzamine supplemented, when needed, with 109 

β-blockers. Patients in the control group had aldosterone– or cortisol-secreting, or non-110 

functioning neoplasms. Exclusion criteria were (i) Paragangliomas, (ii) malignant tumor, (iii) type 111 

2 diabetes treated with a thiazolidinedione, or (iv) untreated hyper- or hypothyroidism.  112 
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Fat biopsies were removed after tumor resection under stable intraoperative 113 

hemodynamic conditions. Depending on the surgical approach taken to perform adrenalectomy, 114 

~1 g was resected from superficial SC fat in the anterior upper abdomen or in the posterior 115 

abdominal wall below the 12th rib. 1-3 g was taken from retroperitoneal fat adjacent to the adrenal 116 

tumor.  When the operative approach was intra-peritoneal, 1-3 g OME fat was also collected. Fat 117 

samples were placed on ice and processed within 30 min of collection. After cleaning, fat samples 118 

were cut into pieces and used fresh for bioenergetics experiments, fixed in formalin for histology, 119 

or snap frozen in liquid nitrogen and stored at –80ºC. 120 

 121 

Blood collection and analyses 122 

Fasting blood was collected between 7 am and 10 am in EDTA tubes from patients just 123 

before entering the operating room. Plasma aliquots were sent to Quest Diagnostics to measure 124 

fractionated catecholamines by HPLC or stored at –80ºC. Plasma glucose concentrations were 125 

measured using a colorimetric glucose assay kit (GAGO-20, Sigma Aldrich). Atrial natriuretic 126 

peptide (ANP) (EIA-ANP, RayBiotech, Inc.), B-type natriuretic peptide (BNP) (ELH-BNP, 127 

RayBiotech, Inc.), and cortisol (ADI-900-071, Enzo) were measured according to the 128 

manufacturer’s instructions. For cortisol determination, steroid displacement reagent was used to 129 

displace steroid binding to proteins. 130 

 131 

Histology  132 

Haemotoxylin and eosin staining was performed on 7 µm sections from each fat depot. 133 

Several sections from different regions of each biopsy were evaluated. The presence of unilocular 134 

and multilocular adipocytes in each section was assessed visually by bright-field microscopy by 135 

2-3 independent observers. 136 

 137 

Immunohistochemistry 138 
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The presence of UCP1 protein in tissue samples was assessed by immunohistochemistry 139 

with a UCP1 antibody (#662045, Calbiochem) at 1:500 dilution. Staining specificity was 140 

confirmed on slides where primary antibody was omitted. Sections were counterstained with 141 

hematoxylin. 142 

 143 

Gene expression analysis 144 

RNA was extracted from frozen tissue samples using TRIzol (Life Technologies). For 145 

real-time quantitative PCR analysis (RT-qPCR), 1 µg of RNA was reverse transcribed using 146 

iScript (Bio-Rad). A standard curve was constructed from pooled cDNA samples to take account 147 

the efficiency of primers and to obtain the Standard Quality (SQ) values. Target gene SQ values 148 

were normalized to B2M and 36B4, which did not differ significantly between the groups. Primer 149 

sequences are listed in Supplemental Table 1. 150 

For global gene expression, RNA from pADR fat depots was arrayed on an Illumina HT-151 

12 v4.0 bead chip at the UCLA Neuroscience Genomics Core. Analysis was performed with 152 

GenomeStudio V2011.1 using quantile normalization, background subtraction, and a present call 153 

P < 0.05. Differentially regulated genes were defined as having > 2-fold difference compared to 154 

control. Lists of genes that were significantly up- or down-regulated were subjected to functional 155 

enrichment using DAVID annotation tools and the “single protein of protein information 156 

resource” (SP_PIR) category (23). Venn analysis and heat map representations were obtained 157 

with GenePattern (genepattern.broadinstitute.org). 158 

 159 

Protein analysis by Western blotting 160 

Western blots were performed essentially as published previously (14) with minor 161 

changes. Briefly, 8 µg mitochondrial protein extracts were separated by SDS-PAGE and 162 

transferred to a nitrocellulose membrane. After blocking in 5% milk and 0.2% Tween 20 in TBS, 163 

anti-UCP1 antibody (1:1000 dilution, #662045, Calbiochem) was incubated overnight at 4ºC in 164 
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3% milk and 0.2% Tween 20 in TBS. An anti-cytochrome c antibody (136F3, Cell Signalling 165 

Technology®) was used in 5% bovine serum albumin and also incubated overnight. A goat 166 

anti-rabbit secondary antibody (sc-2030, Santa Cruz Biotechnology, Inc.) was used at 167 

1:20,000 dilution for 1h at room temperature. Immunoreactive bands were developed with 168 

ECL Prime (RPN2232, Amersham) and visualized with a Bio-Rad Gel-Doc imager. 169 

 170 

Mitochondrial Bioenergetics 171 

Mitochondria were isolated from fresh tissues and immediately used in an XF24 172 

Analyzer (Seahorse Bioscience) as previously described (24). Briefly, mitochondrial protein yield 173 

was determined by Bradford assay and 50 µg pADR or 100 µg SC or OME mitochondria were 174 

seeded per well by centrifugation. For the coupling assay, basal oxygen consumption rate (OCR) 175 

was measured in the presence of 10 mM succinate and 2 µM rotenone, and after sequential 176 

addition of 4 mM ADP (Complex V substrate), 2.5 µg/ml oligomycin (Complex V inhibitor), 4 177 

µM FCCP (mitochondrial uncoupler) and 4 µM antimycin A (Complex III inhibitor). For electron 178 

flow assays, basal OCR was measured in presence of 10 mM pyruvate (Complex I substrate), 2 179 

mM malate and 4 µM FCCP, and after sequential addition of 2 µM rotenone (Complex I 180 

inhibitor), 10 mM succinate (Complex II substrate), 4 µM antimycin A (Complex III inhibitor) 181 

and 1mM TMPD containing 10 mM ascorbate (Complex IV substrate). OCR was normalized per 182 

µg mitochondrial protein. 183 

 184 

Statistics 185 

Statistical analyses were performed with GraphPad Prism. Normal distribution of 186 

samples was tested to select parametric or nonparametric tests as indicated in the figure legends. 187 

Two-tailed Student’s t test or one-way ANOVA for multiple comparisons was used to determine 188 

P values. Pearson’s coefficient correlation (r) and P values were calculated for the linear 189 
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correlations. All results are expressed as mean ± SEM or mean ± SD for subject characteristics. 190 

Statistical significance was defined as P < 0.05. 191 

 192 

 193 

Results 194 

Forty-six patients with benign adrenal tumors were enrolled in the study; clinical characteristics 195 

are presented in Table 1. Of these, 21 tumors were confirmed to be pheos on histopathology and 196 

25 were adrenal cortical adenomas, which served as controls. The controls included 12 197 

aldosterone-secreting adenomas, 2 cortisol-secreting adenomas, and 11 non-functioning tumors. 198 

The mean age, plasma glucose and free fatty acid levels were not different between the pheo and 199 

control groups. Body mass index (BMI) was lower in the pheo group compared to controls (P = 200 

0.048). 201 

Histology was performed for pADR and SC fat samples from all patients (21 pheos, 25 202 

controls). OME fat was collected only from individuals having intra-peritoneal surgery, leading to 203 

availability of OME samples from only 5 control and 4 pheo patients. All sections examined from 204 

OME and SC depots contained adipocytes with unilocular morphology. In pADR samples, 205 

multilocular adipocytes characteristic of brown/beige adipose tissue were present in 52.4% 206 

(11/21) of pheo samples, but in only 4% (1/25) of the controls (P < 0.001, Fisher’s exact test). 207 

Typically, the multilocular adipocytes in pADR fat occurred in pockets that were dispersed 208 

throughout the white adipocytes (Figure 1 and Supplemental Fig. 1). Based on histology, we 209 

classified pheo subjects for subsequent analysis as either pheoUni (having exclusively unilocular 210 

adipocytes) or pheoMulti (having some multilocular adipocytes). 211 

The control, pheoUni, and pheoMulti groups did not differ in age, BMI, or plasma glucose 212 

and free fatty acid levels (Table 1). Atrial (ANP) and B-type (BNP) natriuretic peptides, as well 213 

as cortisol levels, have been associated with browning in WAT depots (25–27). Plasma levels of 214 

these hormones did not differ among the three groups of patients (Table 1), suggesting no 215 
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influence on browning in the pheoMulti group. In addition, use of -blockers was equally divided 216 

between pheoUni and pheoMulti (5/10 and 5/11 patients, respectively) thus ruling out an inhibitory 217 

effect of the -adrenergic blockers on adipocyte browning. We hypothesized that differences in 218 

catecholamine levels released by the adrenal tumors may influence the development of 219 

multilocular adipocytes. The pheoMulti group had higher total and individual plasma 220 

catecholamines (norepinephrine, epinephrine, normetanephrine and metanephrine) than the 221 

control group (Figure 2). Notably, the pheoMulti group had higher total catecholamine and 222 

norepinephrine levels than the pheoUni group. The pheoUni group also showed significantly higher 223 

normetanephrine and metanephrine levels than controls, but the levels were not as high as in the 224 

pheoMulti group. Thus, the pheoMulti patients had higher levels than control subjects for all 225 

catecholamines measured, and were distinguished from the pheoUni subjects by higher total 226 

catecholamine levels. 227 

We examined UCP1 mRNA and protein levels in adipose tissue from pADR, SC and 228 

OME depots. UCP1 mRNA abundance was significantly higher in pADR fat from the pheoMulti 229 

group compared to the control (9-fold) and the pheoUni (24-fold) groups (Figure 3A). By contrast, 230 

UCP1 mRNA levels in SC or OME depots were low and not different between the three patient 231 

groups. Immunohistochemistry localized UCP1 protein exclusively to multilocular adipocytes 232 

within the pADR fat samples (Figure 3B). No UCP1 staining was observed in pADR fat from 233 

control or pheoUni groups, or in OME or SC fat depots from any group. By Western blot analysis, 234 

we detected UCP1 protein in pADR fat from individuals in the pheoMulti group, but not in the 235 

pheoUni or control groups (Figure 3C). No UCP1 protein was detected in SC or OME fat from any 236 

group (data not shown). 237 

The presence of multilocular adipocytes expressing UCP1 in pADR fat from pheo 238 

patients has been reported previously (17–20), but it has not been determined whether these 239 

adipocytes exhibit enhanced mitochondrial function. To evaluate, we isolated mitochondria from 240 
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the pADR, SC, and OME fat depots of control, pheoUni, and pheoMulti groups and measured total 241 

respiration and activity of specific mitochondrial respiratory chain complexes. First, using a 242 

coupling assay, basal oxygen consumption rate (OCR) was 7-fold higher in mitochondria from 243 

pADR fat of pheoMulti subjects than from the other groups (Figure 4A), whereas in SC and OME 244 

fat depots it was similar in all groups. Complex V and maximal respiration rates were also raised 245 

in the pheoMulti group (Figure 4B) as was coupled and uncoupled respiration rates. Finally, we 246 

assessed the activity of the respiratory chain complexes I-IV by performing an electron flow 247 

assay. We detected increased OCR for all four complexes in pheoMulti mitochondria compared to 248 

both control and pheoUni groups, while pheoUni and control groups did not differ from one another 249 

(Figure 4C). Overall, these results demonstrate that mitochondria from the pADR fat of pheoMulti 250 

patients have higher electron transport chain (ETC) activity and capacity. 251 

To evaluate the relationship between UCP1 and mitochondrial uncoupling, we assessed 252 

the Pearson’s correlation between the two traits in all pheo patients. There was a significant 253 

positive correlation between UCP1 mRNA levels and uncoupled respiration rate (r = 0.536; P < 254 

0.05). Correlations between total catecholamines and mitochondrial ETC respiratory chain 255 

complex I (r = 0.743; P < 0.01), complex II (r = 0.802; P < 0.01), complex III (r = 0.806; P < 256 

0.01), and IV (r = 0.762; P < 0.01) were each significant, suggesting an association between 257 

plasma catecholamines and mitochondrial activity. 258 

To provide an unbiased assessment of transcriptional changes that lead to enhanced 259 

mitochondrial activation in pADR fat of pheoMulti samples, we performed gene expression 260 

profiling. We analyzed pADR adipose tissue mRNA from control, pheoUni, and pheoMulti samples 261 

(n = 4 patients from each group) by microarray hybridization. Compared to controls, pheoMulti 262 

samples showed 2-fold up-regulation of 470 genes and down-regulation of 274 genes (P < 0.05); 263 

pheoUni samples showed up-regulation of 590 and down-regulation of 272 genes (Figure 5A). 264 

Most relevant to the observed differences in mitochondrial activation between pheoMulti and 265 
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pheoUni groups, 260 genes were uniquely up-regulated, and 188 genes uniquely down-regulated, 266 

in pheoMulti fat (Figure 5A, shaded region).  267 

We performed functional annotation of the genes that were specifically altered in the 268 

pheoMulti group (shaded regions in Figure 5A) using the DAVID functional annotation tool (23). 269 

The genes that were specifically up-regulated in pheoMulti pADR fat were enriched in 270 

mitochondrion- and oxidation reduction-related categories (Figure 5A). The genes that were 271 

uniquely down-regulated in pheoMulti pADR fat were enriched in categories that include signaling, 272 

secreted proteins, and cytokines (Figure 5B). The heat map in Figure 5B displays the expression 273 

pattern of the 82 up-regulated genes present in the top enrichment category, mitochondrion (P < 274 

1.82E-48). Genes in this category were associated with the TCA cycle (ACO2, L2HGDH, DLAT, 275 

PDHX), -oxidation (ACAA2, ACADM, CPT1B, HADHA, HADHB) and respiration (BRP44, 276 

CABC1, ETFDH, SFXN4, UCP1). Notably, several genes were components of the electron 277 

transport chain complex I (NDUFA8, NDUFA9, NDUFS3, NDUFV3), complex II (SDHA and 278 

SDHB), complex III (CYC1, COQ3, COQ6, COQ9), coenzyme Q complex (UQCRB, UQCRC1, 279 

UQRC2, UQCRFS1), and complex IV (COX5A, COX6A1, COX7B). We validated expression 280 

levels of several genes and proteins by RT-qPCR or western blot. ETC-related gene expression 281 

levels were significantly higher in the pheoMulti compared to the control group (Figure 5C). These 282 

gene expression differences, together with increased mitochondrial activity, suggest that 283 

mitochondria in pheoMulti pADR adipose tissue are altered to promote higher -oxidation and 284 

respiration.  285 

The expression of specific gene markers has been proposed to distinguish brown 286 

adipocytes from beige adipocytes (7,15,28–31). We assessed representative brown and beige gene 287 

expression markers in pADR fat in our control, pheoUni, and pheoMulti samples using the 288 

microarray data or by RT-qPCR (Supplemental Table 2). Of 17 genes assessed in pADR, only 289 

PAT2 exhibited higher expression in pheoMulti compared to the other groups. These data suggest 290 
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that the multilocular adipocytes in pADR fat do not exhibit a typical classical brown or beige 291 

adipose tissue gene expression signature. 292 

 293 

 294 

Discussion 295 

In the present study, we analyzed the effects of increased catecholamine levels present in 296 

pheo patients on browning of adipose tissue depots located adjacent to and distant from the pheo 297 

tumors. In our sample, which represents the largest series of pheo patients analyzed for effects on 298 

browning reported to date, we identified multilocular adipocytes that express UCP1 in 299 

approximately half of the pheo subjects. Adipocytes with brown character were detected in pADR 300 

fat, but not in SC or OME adipose tissue depots, which are anatomically distant from the pheo 301 

tumor. The subset of pheo patients that exhibited multilocular adipocytes containing UCP1 had 302 

higher plasma catecholamine levels than pheo patients that did not exhibit multilocular pADR fat 303 

and control subjects with non-catecholamine-secreting adrenal tumors. We demonstrate, for the 304 

first time, that the browning phenotype occurring in pADR fat of pheo subjects is associated with 305 

elevated mitochondrial respiration, characterized by increased activity of all ETC complexes, as 306 

well as increased uncoupled respiration. The increased mitochondrial respiration was associated 307 

with elevated expression of a panel of genes involved in mitochondrial energy metabolism.  308 

Pheochromocytoma is a catecholamine-secreting tumor, but there is variation among 309 

patients in the levels of circulating catecholamines and in the time between tumor formation and 310 

removal, which may be several years (16). Our detection of browning in pADR fat of 11/25 of 311 

pheo patients is consistent with a previous study where 62% of pheo cases (5/8) had multilocular 312 

adipocytes (18). Notably, we found that the induction of browning did not extend to SC or OME 313 

fat depots despite the fact that the catecholamines secreted by the adrenal tumors enter the 314 

systemic circulation. In mice, the SC fat depot is susceptible to browning, but may have less 315 

capacity to undergo remodeling in humans (9). For example, in a previous study of eight pheo 316 
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patients, multilocular adipocytes were visible in the pADR fat but not the SC depot (19). 317 

Similarly, no browning was detected in abdominal fat after 8h cold exposure in overweight 318 

human adults under conditions that activated BAT glucose metabolism and increased energy 319 

expenditure (32). Healthy human volunteers exposed to 10 days of cold also did not show SC 320 

browning despite elevated plasma catecholamines (33). In contrast, using major burn trauma as a 321 

model for adrenergic stress, multilocular adipocytes expressing UCP1 in SC fat were observed 322 

after only 3 weeks (34,35). Increased UCP1 expression (3-fold) was also observed in SC fat 323 

during winter (36). There are some reports of browning in OME fat in a portion of pheo patients 324 

(21,22) but plasma catecholamines were not reported, making it difficult to compare to the 325 

current study. Variations in browning in pheo patients could be due to catecholamines, genetic, 326 

and/or environmental factors that differ among individuals (e.g., seasonal temperature at the time 327 

samples were obtained).  328 

The induction of browning in pheo subjects appears to be adipose depot-dependent, with 329 

pADR, and to a lesser extent OME fat depots, more prone to adipose tissue remodeling than SC 330 

fat. These findings could have important repercussions on the use of thermogenic agonists to 331 

modulate obesity since the majority of human fat is stored in SC depots (37). Differences in 332 

vascularization, innervation, or intrinsic properties of adipocyte precursor cells could contribute 333 

to differences in the capacity for browning among adipose depots together with mitochondrial 334 

capacity to increase respiratory activity, a prominent feature of pADR fat of pheo patients that 335 

exhibited browning. We also cannot rule out the possibility that elevated local catecholamine 336 

levels adjacent to the tumor play a role in the browning of pADR fat in pheo patients. 337 

Molecular markers for classical brown adipocytes vs. beige adipocytes have been 338 

identified in mice, and have also been used to characterize human brown/beige cells (7,11–339 

13,15,30,38). By measuring several of these mRNA markers we did not observe a clear classical 340 

brown or beige signature in pADR of pheoMulti patients. It should be noted that the use of these 341 

gene expression markers to distinguish brown and beige adipocytes remains controversial and 342 
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inconclusive. We cannot rule out that the heterogeneity of the pADR tissue, containing regions of 343 

typical white adipocytes neighboring the pockets of multilocular adipocytes, may prevent 344 

definitive gene expression profiles to be determined. Additionally, it is possible that beige 345 

adipocyte markers are fat depot-specific—that is, pADR, OME, and epicardial fat may not induce 346 

the same subset of genes during browning, leading to distinct molecular signatures (39,40). 347 

Regardless of the gene expression markers present, our studies of mitochondrial activity 348 

definitively demonstrate that pADR fat from pheoMulti patients exhibits a key functional 349 

characteristic of brown and beige adipocytes in having enhanced total and uncoupled respiratory 350 

activity and up-regulation of genes directly associated with mitochondrial activity. Future studies 351 

may reveal whether these genes are also up-regulated in white adipose tissue in other conditions 352 

that promote browning.  353 

In conclusion, the phenotypic browning in pADR fat of pheo patients is accompanied by 354 

metabolic alterations in mitochondrial activity and related gene expression changes, which could 355 

influence fuel utilization and energy expenditure. The induction of browning in pADR from a 356 

subset of pheo patients is positively correlated with plasma catecholamines, but additional factors 357 

may also contribute. SC and OME fat may not undergo browning in response to chronic 358 

adrenergic stress per se. Further analyses of the differential gene expression profile and 359 

mitochondrial activity in pADR compared to SC and OME fat may shed light on the regulation of 360 

browning in pheo pADR adipose tissue, and potential differences between the capacity of human 361 

pADR and SC adipose tissues to undergo browning.  362 

 363 
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Figure Legends 499 

 500 

Figure 1. Histomorphology of white adipose tissue depots. Representative images of H&E 501 

stained sections from pADR, SC, and OME fat of control and pheo patients. Multilocular 502 

adipocytes were present exclusively in pADR fat, and observed in 4% and 52.4% of control and 503 

pheo patients, respectively (10x magnification. Black bar represents 100 µm). 504 

 505 

Figure 2. Plasma catecholamine levels in control and pheo patients. PheoMulti patients show the 506 

highest catecholamine levels. * P < 0.05, ** P < 0.01, *** P < 0.001. Data analyzed by Kruskal-507 

Wallis multiple comparison test, except for total catecholamine levels where a one-way ANOVA 508 

multiple comparison test was used (n = 10-25). 509 

 510 

Figure 3. Detection of UCP1 in pADR fat. A: UCP1 mRNA levels in pADR (n = 8-20), SC (n = 511 

6-20) and OME (n = 2-5) fat. ** P < 0.01, *** P < 0.001 using a one-way ANOVA multiple 512 

comparison test. B: Immunohistochemistry using an antibody against UCP1. Positive staining 513 

was present only in the multilocular adipocytes from pADR fat (10x magnification. Black bar 514 

represents 100 µm). C: UCP1 protein in pADR fat detected by Western blot. Ponceau red stain of 515 

total protein is shown for normalization. 516 

 517 

Figure 4. Mitochondrial respiration is increased in pheoMulti pADR fat. A: Complex II-driven 518 

oxygen consumption rate (OCR) in isolated mitochondria from pADR (n = 8-12), SC (n = 5-10), 519 

and OME (n = 2-3) fat depots. B: mitochondrial respiration parameters from a coupling assay. 520 

Complex V and maximal respiration were obtained after sequentially injections of ADP and 521 

FCCP, respectively. Coupled respiration was the oligomycin-sensitive OCR while uncoupled was 522 

the OCR difference between oligomycin and antimycin A injections (n = 8-12). C: different 523 

electron transport chain complexes respiration. Complex I, II, and IV respiration were measured 524 
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after the sequential injection of pyruvate, succinate and ascorbate/TMPD, respectively. Complex 525 

III respiration corresponded to the antimycin A-sensitive respiration (n = 5-12). * P < 0.05, ** P 526 

< 0.01, *** P < 0.001. Data analyzed by Kruskal-Wallis multiple comparison test. 527 

 528 

Figure 5. Gene expression profiling of pADR fat from control, pheoUni and pheoMulti subjects by 529 

microarray analysis.. A: Left, Venn diagrams illustrating the genes up- and down-regulated in 530 

pADR fat from pheoUni and pheoMulti compared to control subjects. Right, functional enrichment 531 

analysis of genes that are uniquely up- or down-regulated in the pheoMulti group, using DAVID 532 

analysis with SP_PIR categories. The number of genes for each functional category (Count), 533 

enrichment P values, and multiple testing correction (Benjamini < 0.0001 and <0.05 for up- and 534 

down-regulated genes, respectively) are presented. B: Heat map representation of gene expression 535 

levels for genes in the top SP_PIR category (“mitochondrion”) genes that are up-regulated in the 536 

pheoMulti group. Genes are presented in alphabetical order. C: Validation of 5 electron transport 537 

genes up-regulated in pADR pheoMulti by RT-qPCR or Western blot. * P < 0.05, ** P < 0.01 538 

using a one-way ANOVA multiple comparison test (n = 7-20). 539 

  540 
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 541 

Table 1. Characteristics of subjects used in the study.  542 

  Control subjects All pheo PheoUni PheoMulti 

Age (years) 53.4 ± 8.2 51.2 ± 13.4 47.1 ± 13.6 54.9 ± 12.7 

Male/Female (n) 15/10 9/12 4/6 5/6 

BMI (kg/m2) 30.3 ± 7.1 26.6 ± 4.5* 27.7 ± 5.6 25.7 ± 3.4 

Glucose (mg/dl) 88.9 ± 35.5 78.6 ± 12.8 84.1 ± 15.7 74.1 ± 7.9 

FFA (mmol/l) 0.73 ± 0.40 0.54 ± 0.30 0.47 ± 0.15 0.58 ± 0.34 

ANP (pg/ml) 33.0 ± 10.2 32.2 ± 4.2 31.9 + 8.3 32.4 ± 1.1 

BNP (pg/ml) 116 ± 81 134 ± 88 177 ± 91 102.3 ± 77 

Cortisol (µg/dl) 11.5 ± 3.1 9.2 ± 3.5 9.3 ± 4.9 9.0 ± 2.0 

Data are expressed as mean ± SD. FFA, free fatty acid, ANP, atrial natriuretic peptide; BNP, B-543 

type natriuretic peptide. * P < 0.05 vs control. 544 

 545 
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