3,426 research outputs found

    ATLAS prospects for beyond the Standard Model searches

    Get PDF
    We discuss how ATLAS has been preparing for the analysis of the first fb-1 of good data at 14 TeV in view of discovering new physics beyond the Standard Model. We show some ideas developed for understanding the backgrounds and we present as realistic as possible estimates of the reach of the experiment

    Indirect limits on SUSY Rp violating couplings lambda and lambda'

    No full text
    We review and update as many as possible indirect limits on SUSY Rp violating couplings lambda and lambda'. We consider about 25 experimental measurements and compare them to their expectation value in the standard model. We find more stringent limits on almost all of the parameter

    Physics Beyond the Standard Model

    Full text link
    I briefly summarize the prospects for extending our understanding of physics beyond the standard model within the next five years.Comment: 9 pages, 2 figures, LaTeX. Presented at the 1999 UK Phenomenology Workshop, Durham, September 1999. To be published in Journal of Physics

    Probing RS scenarios of flavour at LHC via leptonic channels

    Full text link
    We study a purely leptonic signature of the Randall-Sundrum scenario with Standard Model fields in the bulk at LHC: the contribution from the exchange of Kaluza-Klein (KK) excitations of gauge bosons to the clear Drell-Yan reaction. We show that this contribution is detectable (even with the low luminosities of the LHC initial regime) for KK masses around the TeV scale and for sufficiently large lepton couplings to KK gauge bosons. Such large couplings can be compatible with ElectroWeak precision data on the Zff coupling in the framework of the custodial O(3) symmetry recently proposed, for specific configurations of lepton localizations (along the extra dimension). These configurations can simultaneously reproduce the correct lepton masses, while generating acceptably small Flavour Changing Neutral Current (FCNC) effects. This LHC phenomenological analysis is realistic in the sense that it is based on fermion localizations which reproduce all the quark/lepton masses plus mixing angles and respect FCNC constraints in both the hadron and lepton sectors.Comment: 15 pages, 6 Figures, Latex fil

    Lightest-neutralino decays in R_p-violating models with dominant lambda^{prime} and lambda couplings

    Full text link
    Decays of the lightest neutralino are studied in R_p-violating models with operators lambda^{prime} L Q D^c and lambda L L E^c involving third-generation matter fields and with dominant lambda^{prime} and lambda couplings. Generalizations to decays of the lightest neutralino induced by subdominant lambda^{prime} and lambda couplings are straightforward. Decays with the top-quark among the particles produced are considered, in addition to those with an almost massless final state. Phenomenological analyses for examples of both classes of decays are presented. No specific assumption on the composition of the lightest neutralino is made, and the formulae listed here can be easily generalized to study decays of heavier neutralinos. It has been recently pointed out that, for a sizable coupling lambda^{prime}_{333}, tau-sleptons may be copiously produced at the LHC as single supersymmetric particles, in association with top- and bottom-quark pairs. This analysis of neutralino decays is, therefore, a first step towards the reconstruction of the complete final state produced in this case.Comment: 40 pages, 11 figures, version to appear in JHE

    Position resolution and particle identification with the ATLAS EM calorimeter

    Full text link
    In the years between 2000 and 2002 several pre-series and series modules of the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon and pion beams. The performance of the calorimeter with respect to its finely segmented first sampling has been studied. The polar angle resolution has been found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection has been measured to be about 3.5 for 90% photon selection efficiency at pT=50 GeV/c. Electron-pion separation studies have indicated that a pion fake rate of (0.07-0.5)% can be achieved while maintaining 90% electron identification efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM

    Measurement of the electron structure function F2e at LEP energies

    Get PDF
    The hadronic part of the electron structure function F2e has been measured for the first time, using e+e−e+e− data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √s=91.2-209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function View the MathML sourceF2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function View the MathML sourceF2γ analyses and help in refining existing parameterisations

    Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    Get PDF
    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10% sqrt(E) for the sampling term and about 0.2% for the local constant term
    corecore