SUSY 06, Newport Beach

Recent Developments in Little Higgs Searches at LHC

presented by: F. Ledroit LPSC

on behalf of the ATLAS collaboration

- The model
- Heavy gauge boson searches
 - Leptonic decays (Eur. Phys. J. C3952, 13 (2005))
 - Hadronic decays NEW!
 - Higgs decays, m_h=200 GeV NEW!
 - Higgs decays, m_h=120 GeV (Eur. Phys. J. C3952, 13 (2005))
- Summary

 $\begin{array}{l} \hline \textit{Effective model} \ adressing \ hierarchy \ problem \\ \Rightarrow \ larger \ symmetry, \ broken \ at \ high \ scale \\ \Rightarrow \ introduce \ heavy \ top \ T, \ heavy \ Higgses \ \phi \\ and \ heavy \ gauge \ bosons \ Z_H, \ W_H, \ A_H \end{array}$

Littlest Higgs model

[Arkani-Hamed et al., JHEP 207(2002)34]

 $SU(5) \rightarrow SO(5)$, scale ~10TeV Gauge sector $[SU(2)\otimes U(1)]^2$ SM Higgs Phenomenology Han et al., Phys.Rev.D67(2003)95004

<u>Gauge sector</u>: parameter θ : mixing angle between W triplets

 $W_{\rm H}$, $Z_{\rm H}$ mass degenerate

$$\mathsf{M} < \mathsf{6} \ \mathsf{TeV} \cdot \left(\frac{m_h}{200 \ GeV}\right)^2$$

EW fits \rightarrow strong constraints Little Higgs realized in several models. Similar particle content.

SUSY 06

Z_H , W_H production and decays

SUSY 06

Little Higgs searches at LHC

Newport Beach – June 16th 2006

• The model

- Heavy gauge boson searches
 - Leptonic decays (Eur. Phys. J. C3952, 13 (2005))
 - Hadronic decays NEW!
 - Higgs decays, m_h=200 GeV NEW!
 - Higgs decays, m_h=120 GeV (Eur. Phys. J. C3952, 13 (2005))
- Summary

Leptonic V_H *decays*

 $V_{H} = Z_{H}, W_{H} = 6$

All analyses performed using a *parameterized* simulation of the ATLAS detector (ATLFAST)

 ϵ (lepton tag) = 90%

Poisson significance (~S/JB) > 5 + S \ge 10 in the mass window \rightarrow discovery

SUSY 06

Little Higgs searches at LHC

Outline

• The model

- Heavy gauge boson searches
 - Leptonic decays (Eur. Phys. J. C3952, 13 (2005))
 - Hadronic decays NEW!
 - Higgs decays, m_h=200 GeV NEW!
 - Higgs decays, m_h=120 GeV (Eur. Phys. J. C3952, 13 (2005))
- Summary

Hadronic V_H decays

 $(\Delta R)^2 = (\Delta \eta)^2 + (\Delta \phi)^2$ η =pseudo-rapidity,

♦=azimuthal angle

 $V_{H} = Z_{H}, W_{H}$ $Z_{H} \rightarrow t_{1} \overline{t}_{2}, t_{1} \rightarrow b \ell \nu, \overline{t}_{2} \rightarrow \overline{b} j j \quad (\ell = e, \mu)$

Background: tt, W+jets,...

 ϵ (b tag) = 50 (20)% Ru = 100 (130) M_Z = 1 (2)TeV validated with full simulation

 $\varepsilon_{kine} = 27 (21)\%, M=1 (2) TeV$

SUSY 06

Hadronic V_H decays

SUSY 06

Little Higgs searches at LHC

• The Z_H to $t\bar{t}$ and $b\bar{b}$ decays are difficult to detect

Little Higgs searches at LHC

Outline

• The model

- Heavy gauge boson searches
 - Leptonic decays (Eur. Phys. J. C3952, 13 (2005))
 - Hadronic decays NEW!
 - Higgs decays, m_h=200 GeV NEW!
 - Higgs decays, m_h=120 GeV (Eur. Phys. J. C3952, 13 (2005))

• Summary

 V_H decays to Higgs (m_h =200 GeV)

Assume Higgs discovered

 $m_h = 200 \text{ GeV}$ BR(h \rightarrow W⁺W⁻) = 74 %SM Higgs \rightarrow usual BRBR(h \rightarrow ZZ) = 26 %

$$V_{H} \rightarrow V_{1}h \rightarrow V_{1}V_{2}V_{3}$$
 $V = Z,W$

 $\begin{array}{l} \mbox{Studied channels:} \circledast V_{H} \rightarrow 3 \mbox{ leptonic V} (\rightarrow \mbox{leptons only}) \\ & \mbox{ } & V_{H} \rightarrow 2 \mbox{ leptonic V} + 1 \mbox{ } & \mbox{ } & jj \end{array}$

"A" modes: $*(V_1 \rightarrow jj)$ and \Rightarrow isolated leptons "B" modes: $*(V_2 \text{ or } V_3 \rightarrow jj) \Rightarrow$ lepton in jet

Branching fractions = $4 \ 10^{-5} - 7 \ 10^{-4}$ (cot θ =0.5)

A modes

 $V_H \rightarrow Vh \rightarrow jjZZ \rightarrow jj \ell^+ \ell^- \ell^+ \ell^- \ (\ell=e,\mu)$ very clean

Cuts: - 2 isol. leptons (1,2) M₁₂= M₇±15 GeV - 2 isol. leptons (3,4) $\Delta R_{1,2-3,4}$ <1.5 - p_T(1+2+3+4)>0.25 M_{V.} - 1 or 2 jets, $p_{T} > 0.25 M_{V} (\Delta R_{1-2} < 1)$ $-m(4|+j)=M_{\mu}\pm 15\%$

M(Z _H)	σ.BR (fb)	M(W _H)	σ. BR (fb)
1000	0.177	1000	0.338
2000	0.009	2000	0.018

Background: ~ none

Little Higgs searches at LHC

A modes

SUSY 06

B modes

 $Z_H \rightarrow Zh \rightarrow \ell^+ \ell^- WW \rightarrow \ell^+ \ell^- jj \ell \nu \quad (\ell=e,\mu)$

Lack of statistics on background \rightarrow extrapolated

SUSY 06

B modes

SUSY 06

Little Higgs searches at LHC

 V_H decays to Higgs (m_h =200 GeV)

Mass reach about 2 TeV, except when $\cot\theta \sim 1$

Although ATLFAST lepton isolation criteria were especially tuned (B modes), needs validation with full simulation

SUSY 06

Outline

- The model
- Heavy gauge boson searches
 - Leptonic decays (Eur. Phys. J. C3952, 13 (2005))
 - Hadronic decays NEW!
 - Higgs decays, m_h=200 GeV NEW!
 - Higgs decays, m_h=120 GeV (Eur. Phys. J. C3952, 13 (2005))
- Summary

 V_H decays to Higgs (m_h =120 GeV)

BR(h→b̄b) = 66 % BR(h→γγ) = 0.2 %

Earlier results:

 $Z_{H} \rightarrow Zh \rightarrow jj\gamma\gamma, \ \ell\ell \ b\overline{b}$ $W_{H} \rightarrow Wh \rightarrow jj\gamma\gamma, \ \ell\nu \ b\overline{b}$ $(\ell=e,\mu)$

ε(b tag) = 40-50% Ru = 100 ε(γ tag) = 80%

SUSY 06

Little Higgs searches at LHC

Summary

The Z_{H} , W_{H} can be discovered up to 5-6 TeV if $\cot\theta$ large It may be possible to probe the model up to ~ 2 TeV •using the $W_{H} \rightarrow t\bar{b} decay$ (cot θ > 0.25) •using the $V_{H} \rightarrow Vh$ decay (cot $\theta \notin [0.8, 1.2]$)

Newport Beach – June 16th 2006

20

References:

G. Azuelos *et al.,* Eur. Phys. J. **C3952**, 13 (2005) S. Gonzales de la Hoz *et al.,* ATL-PHYS-PUB-2006-003

E. Ros and D. Rousseau, ATL-COM-PHYS-2006-031

Many thanks to

the authors of these analyses, and especially

David Rousseau and Matthieu Lechowski

Eduardo Ros and Jose E. Garcia

