155 research outputs found
Design of Wear-Resistant Austenitic Steels for Selective Laser Melting
Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6
Mesalamine-induced myopericarditis in children: a case report and a short revision of the literature
Mesalamine has a central role in the treatment of inflammatory bowel disease (IBD). Myocarditis and/or pericarditis are rare and severe side effects of mesalamine-containing drugs. We describe the case of a 14 years old boy, developing myopericarditis two weeks after starting mesalamine treatment for ulcerative colitis (UC). The adverse effect had a massive impact on the left ventricular function and required immedi-ate intervention. Once identified as possible causative agent, mesalamine was discontinued with subsequent improvement of the clinical symptoms and laboratory findings. No recurrency nor sequelae were detected at the cardiological follow up. Mesalamine is a widely used drug for pediatric IBD treatment, although its effect on heart tissues is a rare but potentially fatal adverse reaction. At the time of presentation, in April 2021, 10 pediatric cases were reported in literature (2 children and 8 adolescents). Of them, 60% were treated with me-salamine for UC and 40% for Chron’s disease (CD). Chest pain and fever were the most common symptoms at presentation (100% and 50% respectively), cough and fatigue were less represented. None of the patients developed sequelae at follow up. In patients treated with mesalamine early recognition of side effects, drug discontinuation and accurate therapy are crucial to prevent progression of the inflammation and to avoid adverse cardiovascular outcomes. (www.actabiomedica.it)
Influence of chemically synthesized powder addition on K0.5Na0.5NbO3 ceramic's properties
A new strategy to produce lead-free K0.5Na0.5NbO3 (KNN) piezoceramics with reliable and improved piezoelectric performance is presented for the first time. KNN powders were synthesized using two distinct synthesis routes: a mechanochemical activation-assisted solid-state route (KNNSSR) and a sol-gel modified Pechini method (KNNchem). KNNchem powders were mixed with KNNSSR at different weight ratios (0, 3, 5, 10 and 20 wt%), and the mixtures were conventionally consolidated and sintered at 1130 degrees C for 2 h. It was found that KNNchem powders influence crystal phase, microstructure and piezoelectric properties of the sintered pellets. Gradually increasing KNNchem content promotes the conversion of the undesired phase present in KNNSSR into the stoichiometric one. It is also proved that the addition of KNNchem between 5 and 10 wt% improves piezoelectric properties, eventually leading to a d(33) piezoelectric charge constant value of 113-115 pC/N. These values are among the highest reported for undoped KNN ceramics obtained by conventional sintering
Corrosion behavior and surface properties of PVD coatings for mold technology applications
Chrome plating is still one of the best solutions to coat martensitic steel used in the molding of plastics and rubbers. However, current stringent regulations on environmental impact call for more sustainable processes. In the present work, some physical vapor deposition (PVD) nitride coatings were produced on X155CrMoV12 steel and characterized in terms of both corrosion behavior and surface properties. Results indicated that titanium-based PVD coatings could be a valuable alternative to chromium-based coatings as they exhibited a good compromise between corrosion and surface properties. AlTiN and TiN PVD coatings exhibited adequate hardness for plastic mold applications, with AlTiN reaching hardness as high as 2000 HV. Moreover, the critical loads and adhesion properties were found to be definitely better than those of chromium-based coatings. From a corrosion point of view, the presence of multilayers in AlTiN did not seem to be beneficial as the breakdown potential for TiN (single layer) was ca. 1.1 V vs. saturated calomel electrode (SCE) compared to 0.85 V vs. SCE for AlTiN in aggressive media (NaCl)
Extracellular volume measured by whole body CT scans predicts chronic cardiotoxicity in breast cancer patients treated with neoadjuvant therapies based on anthracyclines: A retrospective study
introduction: neoadjuvant chemotherapies for breast cancer (BC) are effective but potentially cardiotoxic, and expose long survivors at risk of chemotherapy-related cardiac dysfunction (CTRCD). Unfortunately, early screening for CTRCD has actual diagnostic limits. myocardial extracellular volume (mECV) is a radiological marker used in cardiac CT scans and cardiac magnetic resonance for diagnosis and follow-up of CTRCD. It can be measured in whole-body CT (WB-CT) scan, routinely performed in patients at high risk of relapse, to evaluate CTRCD occurrence during oncological follow-up. methods: 82 WB-CT scans were examined at baseline (T0) and during oncological follow-up at first year (T1) and fifth year (T5) after the end of neoadjuvant treatment. mECV was measured at 1 min (PP) and 5 min (DP) after contrast injection. 31 echocardiograms were retrieved in T1 to perform a linear correlation between mECV and left ventricular ejection fraction (LVEF). results: mECV values in T0 were similar between the two groups both in PP and in DP. Significant results were found for PP values in T1 (37.0 % vs 32 %, p = 0.0005) and in T5 (27.2 % vs 31.2 %, p = 0.025). a cut-off value of 35 % in PP proved significant in T1 (OR = 12.4, p = 0.004), while mECV was inversely correlated with LVEF both in PP (adj-S = -3.54, adj-p = 0.002) and in DP (adj-S = -2.51, adj-p = 0.0002), suggesting a synergistic action with the age at diagnosis (p < 0.0001, respectively). conclusions: WB-CT scans performed during oncological reassessment in patients at high-risk of recurrence could be used for CTRCD screening in cardiovascular low-risk patients, especially in aging patients with mECV values above 35 %
DNA damage and transcriptional regulation in iPSC-derived neurons from Ataxia Telangiectasia patients
Abstract Ataxia Telangiectasia (A-T) is neurodegenerative syndrome caused by inherited mutations inactivating the ATM kinase, a master regulator of the DNA damage response (DDR). What makes neurons vulnerable to ATM loss remains unclear. In this study we assessed on human iPSC-derived neurons whether the abnormal accumulation of DNA-Topoisomerase 1 adducts (Top1ccs) found in A-T impairs transcription elongation, thus favoring neurodegeneration. Furthermore, whether neuronal activity-induced immediate early genes (IEGs), a process involving the formation of DNA breaks, is affected by ATM deficiency. We found that Top1cc trapping by CPT induces an ATM-dependent DDR as well as an ATM-independent induction of IEGs and repression especially of long genes. As revealed by nascent RNA sequencing, transcriptional elongation and recovery were found to proceed with the same rate, irrespective of gene length and ATM status. Neuronal activity induced by glutamate receptors stimulation, or membrane depolarization with KCl, triggered a DDR and expression of IEGs, the latter independent of ATM. In unperturbed A-T neurons a set of genes (FN1, DCN, RASGRF1, FZD1, EOMES, SHH, NR2E1) implicated in the development, maintenance and physiology of central nervous system was specifically downregulated, underscoring their potential involvement in the neurodegenerative process in A-T patients
Clinical presentation of celiac disease and diagnosis accuracy in a single-center european pediatric cohort over 10 years
(1) Background: Changes in the clinical presentation of celiac disease (CD) in children have been reported. The guidelines of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) allow esophagogastroduodenoscopy (EGD) with biopsies to be avoided under specific circumstances. We aimed to assess the clinical picture of pediatric CD patients at diagnosis and to validate ESPGHAN non-biopsy criteria. (2) Methods: Patients with suspected CD or undergoing screening from 2004 to 2014 at the University Hospital in Modena, Italy were enrolled. The accuracy of ESPGHAN non-biopsy criteria and modified versions were assessed. (3) Results: In total, 410 patients were enrolled, of whom 403 were considered for analysis. Of the patients considered, 45 were asymptomatic and diagnosed with CD (11.2%) while 358 patients (88.2%) were symptomatic, of whom 295 were diagnosed with CD. Among symptomatic CD patients, 57 (19.3%) had gastrointestinal symptoms, 98 (33%) had atypical symptoms and 140 (47.4%) had both. No difference was found for the presence of gastrointestinal symptoms at different ages. The non-biopsy ESPGHAN criteria yielded an accuracy of 59.4% with a positive predictive value (PPV) of 100%; 173 out of 308 EGD (56.2%) could have been avoided. The modified 7Ă— and 5Ă— upper limit of normal cut-offs for IgA anti tissue-transglutaminase reached 60.7% and 64.3% of EGD avoided, respectively. (4) Conclusions: Over 10 years, late age at diagnosis and increased rates of atypical CD presentation were found. ESPGHAN non-biopsy criteria are accurate for CD diagnosis and allow half of unneeded EGD to be avoided. Modified versions allowed sparing a greater number of EGD
Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway
KRAS is mutated in about 20-25% of all human cancers and especially in pancreatic, lung and colorectal tumors. Oncogenic KRAS stimulates several pro-survival pathways, but it also triggers the trans-activation of pro-apoptotic genes. In our work, we show that G13D mutations of KRAS activate the MAPK pathway, and ERK2, but not ERK1, up-regulates Noxa basal levels. Accordingly, premalignant epithelial cells are sensitized to various cytotoxic compounds in a Noxa-dependent manner. In contrast to these findings, colorectal cancer cell sensitivity to treatment is independent of KRAS status and Noxa levels are not up-regulated in the presence of mutated KRAS despite the fact that ERK2 still promotes Noxa expression. We therefore speculated that other survival pathways are counteracting the pro-apoptotic effect of mutated KRAS and found that the inhibition of AKT restores sensitivity to treatment, especially in presence of oncogenic KRAS. In conclusion, our work suggests that the pharmacological inhibition of the pathways triggered by mutated KRAS could also switch off its oncogene-activated pro-apoptotic stimulation. On the contrary, the combination of chemotherapy to inhibitors of specific pro-survival pathways, such as the one controlled by AKT, could enhance treatment efficacy by exploiting the pro-death stimulation derived by oncogene activation
Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization
Monocytes and macrophages constitute the first line of defense of the immune system
against external pathogens. Macrophages have a highly plastic phenotype depending on
environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory
defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype).
The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cellular
processes, including innate and adaptive immunity. In this study we have analyzed the
differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentiation
and polarization into M1 or M2. In polarized THP-1 cells and primary human macrophages,
NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show
an inverse pattern of expression in polarized macrophages, with elevated expression levels
of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the
IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation
of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.This work was supported by Universidad
de Granada, Plan Propio 2015;#P3B: FAM, VMC
(http://investigacion.ugr.es/pages/planpropio/2015/
resoluciones/p3b_def_28072015); Universidad
de Granada CEI BioTic;#CAEP2-84: VMC (http://
biotic.ugr.es/pages/resolucionprovisional
enseaanzapractica22demayo/!); and Canadian nstitutes of Health Research;#231421, #318176,
#361847: STB, ECL, RK (http://www.cihr-irsc.gc.
ca/e/193.html). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript
Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib
BACKGROUND: XIAP (X-linked inhibitor of apoptosis protein) is an anti-apoptotic protein exerting its activity by binding and suppressing caspases. As XIAP is overexpressed in several tumours, in which it apparently contributes to chemoresistance, and because its activity in vivo is antagonised by second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis-binding protein with low pI, small molecules mimicking SMAC (so called SMAC-mimetics) can potentially overcome tumour resistance by promoting apoptosis.
METHODS: Three homodimeric compounds were synthesised tethering a monomeric SMAC-mimetic with different linkers and their affinity binding for the baculoviral inhibitor repeats domains of XIAP measured by fluorescent polarisation assay. The apoptotic activity of these molecules, alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or Bortezomib, was tested in melanoma cell lines by MTT viability assays and western blot analysis of activated caspases.
RESULTS: We show that in melanoma cell lines, which are typically resistant to chemotherapeutic agents, XIAP knock-down sensitises cells to TRAIL treatment in vitro, also favouring the accumulation of cleaved caspase-8. We also describe a new series of 4-substituted azabicyclo[5.3.0] alkane monomeric and dimeric SMAC-mimetics that target various members of the IAP family and powerfully synergise at submicromolar concentrations with TRAIL in inducing cell death. Finally, we show that the simultaneous administration of newly developed SMAC-mimetics with Bortezomib potently triggers apoptosis in a melanoma cell line resistant to the combined effect of SMAC-mimetics and TRAIL.
CONCLUSION: Hence, the newly developed SMAC-mimetics effectively synergise with TRAIL and Bortezomib in inducing cell death. These findings warrant further preclinical studies in vivo to verify the anticancer effectiveness of the combination of these agents
- …