344 research outputs found
Almost-Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics
By using the method of orthogonal polynomials we analyze the statistical
properties of complex eigenvalues of random matrices describing a crossover
from Hermitian matrices characterized by the Wigner- Dyson statistics of real
eigenvalues to strongly non-Hermitian ones whose complex eigenvalues were
studied by Ginibre.
Two-point statistical measures (as e.g. spectral form factor, number variance
and small distance behavior of the nearest neighbor distance distribution
) are studied in more detail. In particular, we found that the latter
function may exhibit unusual behavior for some parameter
values.Comment: 4 pages, RevTE
Classical Particle in a Box with Random Potential: exploiting rotational symmetry of replicated Hamiltonian
We investigate thermodynamics of a single classical particle placed in a
spherical box of a finite radius and subject to a superposition of a
dimensional Gaussian random potential and the parabolic potential with the
curvature . Earlier solutions of version of this model
were based on combining the replica trick with the Gaussian Variational Ansatz
(GVA) for free energy, and revealed a possibility of a glassy phase at low
temperatures. For a general , we show how to utilize instead the underlying
rotational symmetry of the replicated partition function and to arrive to a
compact expression for the free energy in the limit directly,
without any need for intermediate variational approximations. This method
reveals striking similarity with the much-studied spherical model of spin
glasses. Depending on the value of and the three types of disorder -
short-ranged, long-ranged, and logarithmic - the phase diagram of the system in
the plane undergoes considerable modifications. In the limit of
infinite confinement radius our analysis confirms all previous results obtained
by GVA.Comment: 46 pages, 4 figures; This version corrects a few more typos
discovered in the published versio
Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without fixed-trace
The degree of entanglement of random pure states in bipartite quantum systems
can be estimated from the distribution of the extreme Schmidt eigenvalues. For
a bipartition of size M\geq N, these are distributed according to a
Wishart-Laguerre ensemble (WL) of random matrices of size N x M, with a
fixed-trace constraint. We first compute the distribution and moments of the
smallest eigenvalue in the fixed trace orthogonal WL ensemble for arbitrary
M\geq N. Our method is based on a Laplace inversion of the recursive results
for the corresponding orthogonal WL ensemble by Edelman. Explicit examples are
given for fixed N and M, generalizing and simplifying earlier results. In the
microscopic large-N limit with M-N fixed, the orthogonal and unitary WL
distributions exhibit universality after a suitable rescaling and are therefore
independent of the constraint. We prove that very recent results given in terms
of hypergeometric functions of matrix argument are equivalent to more explicit
expressions in terms of a Pfaffian or determinant of Bessel functions. While
the latter were mostly known from the random matrix literature on the QCD Dirac
operator spectrum, we also derive some new results in the orthogonal symmetry
class.Comment: 25 pag., 4 fig - minor changes, typos fixed. To appear in JSTA
Integrable structure of Ginibre's ensemble of real random matrices and a Pfaffian integration theorem
In the recent publication [E. Kanzieper and G. Akemann, Phys. Rev. Lett. 95, 230201 (2005)], an exact solution was reported for the probability p_{n,k} to find exactly k real eigenvalues in the spectrum of an nxn real asymmetric matrix drawn at
random from Ginibre's Orthogonal Ensemble (GinOE). In the present paper, we offer a detailed derivation of the above result by concentrating on the proof of the Pfaffian integration theorem, the
key ingredient of our analysis of the statistics of real eigenvalues in the GinOE. We also initiate a study of the correlations of complex eigenvalues and derive a formula for the joint probability density function of all complex eigenvalues of a
GinOE matrix restricted to have exactly k real eigenvalues. In the particular case of k=0, all correlation functions of complex eigenvalues are determined
Visualizing sound emission of elephant vocalizations: evidence for two rumble production types
Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
- âŠ