543 research outputs found

    Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle

    Get PDF
    The validity of the Rayleigh hypothesis has been a long-standing issue in the applicability of the T-matrix method to near-field calculations, and despite numerous theoretical works, the practical consequences for numerical simulations have remained unclear. Such calculations are increasingly important in the field of nanooptics, for which accurate and efficient modeling tools are in high demand. We here tackle this challenge by investigating numerically the convergence behavior of series expansions of the electric field around spheroidal particles, which provides us with unambiguous examples to clarify the conditions of convergence. This study is made possible by the combination of alternative methods to compute near-fields accurately, and crucially, the recent improvements in the calculation of T-matrix elements free from numerical instabilities, as such errors would otherwise obfuscate the intrinsic convergence properties of the field series. The resulting numerical confirmation for the range of validity of the Rayleigh hypothesis, complemented by a better understanding of the convergence behavior of the field expansions, is a crucial step toward future developments

    Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement

    Get PDF
    The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography. However, the high manufacturing cost and the fact that currently there are no effective ways to place fluorophores only at the gap prevent the use of these structures for enhancing fluorescence-based biochemical assays. We report on the simultaneous modification of fluorescence intensity and lifetime of dye-labeled DNA in the presence of aggregated silver nanoparticles. The nanoparticle aggregates act as efficient plasmonic antennas, leading to more than 2 orders of magnitude enhancement of the average fluorescence. This is comparable to the best-reported fluorescence enhancement for a single molecule but here applies to the average signal detected from all fluorophores in the system. This highlights the remarkable efficiency of this system for surface-enhanced fluorescence. Moreover, we show that the fluorescence intensity enhancement varies with the plasmon resonance position and measure a significant reduction (300Ă—) of the fluorescence lifetime. Both observations are shown to be in agreement with the electromagnetic model of surface-enhanced fluorescence

    Diagnostic Validity of Patient-Reported History for Shoulder Pathology

    Get PDF
    Objective The purpose of this article is to determine whether patient-reported history items are predictive of shoulder pathology and have the potential for use in triaging patients with shoulder pathology to orthopaedic outpatient clinics. Setting It is set at two tertiary orthopaedic clinics. Patients All new patients reporting pain and/or disability of the shoulder joint were prospectively recruited. A total of 193 patients were enrolled, 15 of whom withdrew, leaving 178 patients composing the study sample. Design Patients completed a questionnaire on the history of their pathology, then the surgeon took a thorough history indicating the most likely diagnosis. The clinician then performed appropriate physical examination. Arthroscopy was the reference standard for those undergoing surgery and magnetic resonance imaging (MRI) with arthrogram for all others. We calculated the sensitivity, specificity, and likelihood ratios (LRs) of history items alone and in combination. We used the LRs to generate a clinical decision algorithm. Main Outcome Measures Diagnosis was determined through arthroscopy or MRI arthrogram. Reporting was standardized to ensure review of all structures. Results The physical examination and history agreed in 75% of cases. Of those that did not agree, the physical examination misdirected the diagnosis in 47% of our cases. In particular, history items were strong predictors of anterior and posterior instability and subscapularis tears and were combined in a tool to be utilized for screening patients. Conclusion The patient-reported history items were effective for diagnosing shoulder pathology and should be considered for use in a triaging instrument

    Estimating photometric redshifts with artificial neural networks

    Get PDF
    A new approach to estimating photometric redshifts - using Artificial Neural Networks (ANNs) - is investigated. Unlike the standard template-fitting photometric redshift technique, a large spectroscopically-identified training set is required but, where one is available, ANNs produce photometric redshift accuracies at least as good as and often better than the template-fitting method. The Bayesian priors on the underlying redshift distribution are automatically taken into account. Furthermore, inputs other than galaxy colours - such as morphology, angular size and surface brightness - may be easily incorporated, and their utility assessed. Different ANN architectures are tested on a semi-analytic model galaxy catalogue and the results are compared with the template-fitting method. Finally the method is tested on a sample of ~ 20000 galaxies from the Sloan Digital Sky Survey. The r.m.s. redshift error in the range z < 0.35 is ~ 0.021.Comment: Submitted to MNRAS, 9 pages, 9 figures, substantial improvements to paper structur

    The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z~2

    Full text link
    Using Hubble Space Telescope and ground-based U through K- band photometry from the Great Observatories Origins Deep Survey (GOODS), we measure the evolution of the luminosity function and luminosity density in the rest-frame optical (UBR) to z ~ 2, bridging the poorly explored ``redshift desert'' between z~1 and z~2. We also use deep near-infrared observations to measure the evolution in the rest-frame J-band to z~1. Compared to local measurements from the SDSS, we find a brightening of the characteristic magnitude, (M*), by ~2.1, \~0.8 and ~0.7 mag between z=0.1 and z=1.9, in U, B, and R bands, respectively. The evolution of M* in the J-band is in the opposite sense, showing a dimming between redshifts z=0.4 and z=0.9. This is consistent with a scenario in which the mean star formation rate in galaxies was higher in the past, while the mean stellar mass was lower, in qualitative agreement with hierarchical galaxy formation models. We find that the shape of the luminosity function is strongly dependent on spectral type and that there is strong evolution with redshift in the relative contribution from the different spectral types to the luminosity density. We find good agreement in the luminosity function derived from an R-selected and a K-selected sample at z~1, suggesting that optically selected surveys of similar depth (R < 24) are not missing a significant fraction of objects at this redshift relative to a near-infrared-selected sample. We compare the rest-frame B-band luminosity functions from z~0--2 with the predictions of a semi-analytic hierarchical model of galaxy formation, and find qualitatively good agreement. In particular, the model predicts at least as many optically luminous galaxies at z~1--2 as are implied by our observations.Comment: 43 pages; 15 Figures; 5 Tables, Accepted for publication in Ap.

    The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys

    Full text link
    [Abridged] We investigate the global galaxy evolution over 12 Gyr (0.05<z<4.5), from the star formation rate density (SFRD), combining the VVDS Deep (17.5<=I<=24.0) and Ultra-Deep (23.00<=i<=24.75) surveys. We obtain a single homogeneous spectroscopic redshift sample, totalizing about 11000 galaxies. We estimate the rest-frame FUV luminosity function (LF) and luminosity density (LD), extract the dust attenuation of the FUV radiation using SED fitting, and derive the dust-corrected SFRD. We find a constant and flat faint-end slope alpha in the FUV LF at z1.7, we set alpha steepening with (1+z). The absolute magnitude M*_FUV brightens in the entire range 02 it is on average brighter than in the literature, while phi* is smaller. Our total LD shows a peak at z=2, present also when considering all sources of uncertainty. The SFRD history peaks as well at z=2. It rises by a factor of 6 during 2 Gyr (from z=4.5 to z=2), and then decreases by a factor of 12 during 10 Gyr down to z=0.05. This peak is mainly produced by a similar peak within the population of galaxies with -21.5<=M_FUV<=-19.5 mag. As times goes by, the total SFRD is dominated by fainter and fainter galaxies. The presence of a clear peak at z=2 and a fast rise at z>2 of the SFRD is compelling for models of galaxy formation. The mean dust attenuation A_FUV of the global galaxy population rises by 1 mag during 2 Gyr from z=4.5 to z=2, reaches its maximum at z=1 (A_FUV=2.2 mag), and then decreases by 1.1 mag during 7 Gyr down to z=0. The dust attenuation maximum is reached 2 Gyr after the SFRD peak, implying a contribution from the intermediate-mass stars to the dust production at z<2.Comment: 23 pages, 15 figures, accepted for publication in A&

    Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis

    Full text link
    Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major. brillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic. broblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2(-/-) mice showed widespread defects in procollagen III processing. Adamts2(-/-) mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis. The data show how evolutionarily related proteases with similar substrate preferences may have distinct biological roles owing to tissue specific gene expression, and provide insights into collagen biosynthesis and the pathobiology of dermatosparaxis
    • …
    corecore