1,002 research outputs found
On the nanocommunications at THz band in graphene-enabled wireless network-on-chip
One of the main challenges towards the growing computation-intensive applications with scalable bandwidth requirement is the deployment of a dense number of on-chip cores within a chip package. To this end, this paper investigates the Wireless Network-on-Chip (WiNoC), which is enabled by graphene- based nanoantennas (GNAs) in Terahertz frequency band. We first develop a channel model between the GNAs taking into account the practical issues of the propagation medium, such as transmission frequency, operating temperature, ambient pressure and distance between the GNAs. In the Terahertz band, not only dielectric propagation loss (DPL) but also molecular absorption attenuation (MAA) caused by various molecules and their isotopologues within the chip package constitute the loss of signal transmission. We further propose an optimal power allocation to achieve the channel capacity subject to transmit power constraint. By analysing the effects of the MAA on the path loss and channel capacity, the proposed channel model shows that the MAA significantly degrades the performance at certain frequency ranges, e.g. 1.21 THz, 1.28 THz and 1.45 THz, of up to 31.8% compared to the conventional channel model, even when the GNAs are very closely located of only 0.01 mm. More specifically, at transmission frequency of 1 THz, the channel capacity of the proposed model is shown to be much lower than that of the conventional model over the whole range of temperature and ambient pressure of up to 26.8% and 25%, respectively. Finally, simulation results are provided to verify the analytical findings
On the nanocommunications at THz band in graphene-enabled Wireless Network-on-Chip
One of the main challenges towards the growing computation-intensive applications with scalable bandwidth requirement is the deployment of a dense number of on-chip cores within a chip package. To this end, this paper investigates the Wireless Network-on-Chip (WNoC), which is enabled by graphene-based nanoantennas (GNAs) in Terahertz frequency band. We first develop a channel model between the GNAs taking into account the practical issues of the propagation medium, such as transmission frequency, operating temperature, ambient pressure and distance between the GNAs. In the Terahertz band, not only dielectric propagation loss (DPL) but also molecular absorption attenuation (MAA) caused by various molecules and their isotopologues within the chip package constitute the loss of signal transmission. We further propose an optimal power allocation to achieve the channel capacity subject to transmit power constraint. By analysing the effects of the MAA on the path loss and channel capacity, the proposed channel model shows that the MAA significantly degrades the performance at certain frequency ranges, e.g. 1.21 THz, 1.28 THz and 1.45 THz, of up to 31.8% compared to the conventional channel model, even when the GNAs are very closely located of only 0.01 mm. More specifically, at transmission frequency of 1 THz, the channel capacity of the proposed model is shown to be much lower than that of the conventional model over the whole range of temperature and ambient pressure of up to 26.8% and 25%, respectively. Finally, simulation results are provided to verify the analytical findings
Pay What You Want as a Marketing Strategy in Monopolistic and Competitive Markets
Pay What You Want (PWYW) can be an attractive marketing strategy to price discriminate between fair-minded and selfish customers, to fully penetrate a market without giving away the product for free, and to undercut competitors that use posted prices. We report on laboratory experiments that identify causal factors determining the willingness of buyers to pay voluntarily under PWYW. Furthermore, to see how competition affects the viability of PWYW, we implement markets in which a PWYW seller competes with a traditional seller. Finally, we endogenize the market structure and let sellers choose their pricing strategy. The experimental results show that outcome-based social preferences and strategic considerations to keep the seller in the market can explain why and how much buyers pay voluntarily to a PWYW seller. We find that PWYW can be viable in isolation, but it is less successful as a competitive strategy because it does not drive traditional posted-price sellers out of the market. Instead, the existence of a posted-price competitor reduces buyers’ payments and prevents the PWYW seller from fully penetrating the market. If given the choice, the majority of sellers opt for setting a posted price rather than a PWYW pricing. We discuss the implications of these results for the use of PWYW as a marketing strategy
Observation of the nonlinear Hall effect under time reversal symmetric conditions
The electrical Hall effect is the production of a transverse voltage under an
out-of-plane magnetic field. Historically, studies of the Hall effect have led
to major breakthroughs including the discoveries of Berry curvature and the
topological Chern invariants. In magnets, the internal magnetization allows
Hall conductivity in the absence of external magnetic field. This anomalous
Hall effect (AHE) has become an important tool to study quantum magnets. In
nonmagnetic materials without external magnetic fields, the electrical Hall
effect is rarely explored because of the constraint by time-reversal symmetry.
However, strictly speaking, only the Hall effect in the linear response regime,
i.e., the Hall voltage linearly proportional to the external electric field,
identically vanishes due to time-reversal symmetry. The Hall effect in the
nonlinear response regime, on the other hand, may not be subject to such
symmetry constraints. Here, we report the observation of the nonlinear Hall
effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum
material, bilayer WTe2. Specifically, flowing an electrical current in bilayer
WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The
NLHE exhibits unusual properties sharply distinct from the AHE in metals: The
NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear
longitudinal response, leading to a Hall angle of about 90 degree. We further
show that the NLHE directly measures the "dipole moment" of the Berry
curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2.
Our results demonstrate a new Hall effect and provide a powerful methodology to
detect Berry curvature in a wide range of nonmagnetic quantum materials in an
energy-resolved way
Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-28374-1We report the first detailed characterization of the sheet third-harmonic optical susceptibility, χ(3)s, of tungsten diselenide (WSe2). With a home-built multiphoton microscope setup developed to study harmonics generation, we map the second and third-harmonic intensities as a function of position in the sample, pump power and polarization angle, for single- and few-layers flakes of WSe2. We register a value of |χ(3)s| ≈ 0.9 × 10-28 m3 V-2 at a fundamental excitation frequency of ℏω = 0.8 eV, which is comparable in magnitude to the third-harmonic susceptibility of other group-VI transition metal dichalcogenides. The simultaneously recorded sheet second-harmonic susceptibility is found to be |χ(2)s| ≈ 0.7 × 10-19 m2 V-1 in very good agreement on the order of magnitude with recent reports for WSe2, which asserts the robustness of our values for |χ(3)s|.Y.W.H. acknowledges scholarship support from NGS. G.E. acknowledges financial support from National
Research Foundation of Singapore (NRF Research Fellowship NRF-NRFF2011-02 and medium-sized centre
programme) and Ministry of Education of Singapore (AcRF Tier 2 MOE2015-T2-2-123). V. M. P. acknowledges
fnancial support from Ministry of Education of Singapore (FRC AcRF Tier 1 R-144-000-386-114). J.C.V.G.
acknowledges fnancial support from CA2DM through National Research Foundation of Singapore (NRF-CRP
Grant No. R-144-000-295-281)
Assessment of fall-related self-efficacy and activity avoidance in people with Parkinson's disease
<p>Abstract</p> <p>Background</p> <p>Fear of falling (FOF) is common in Parkinson's disease (PD), and it is considered a vital aspect of comprehensive balance assessment in PD. FOF can be conceptualized differently. The Falls-Efficacy Scale (FES) assesses fall-related self-efficacy, whereas the Survey of Activities and Fear of Falling in the Elderly (SAFFE) assesses activity avoidance due to the risk of falling. This study aimed at investigating the validity and reliability of FES and SAFFE in people with PD.</p> <p>Methods</p> <p>Seventy-nine people with PD (mean age; 64 years, SD 7.2) completed the Swedish version of FES(S), SAFFE and the physical functioning (PF) scale of the 36-Item Short-Form Health Survey (SF-36). FES(S) and SAFFE were administered twice, with an 8.8 (SD 2.3) days interval. Assumptions for summing item scores into total scores were examined and score reliability (Cronbach's alpha and test-retest reliability) were calculated. Construct validity was assessed by examining the pattern of Spearman correlations (r<sub>s</sub>) between the FES(S)/SAFFE and other variables, and by examining differences in FES(S)/SAFFE scores between fallers and non-fallers, genders, and between those reporting FOF and unsteadiness while turning.</p> <p>Results</p> <p>For both scales, item mean scores (and standard deviations) were roughly similar and corrected item-total correlations exceeded 0.4. Reliabilities were ≥0.87. FES(S)-scores correlated strongest (r<sub>s</sub>, -0.74, p < 0.001) with SAFFE-scores, whereas SAFFE-scores correlated strongest with PF-scores (r<sub>s</sub>, -0.76, p < 0.001). Both scales correlated weakest with age (r<sub>s </sub>≤ 0.08). Experiencing falls, unsteadiness while turning, and FOF was associated with lower fall-related self-efficacy and higher activity avoidance.</p> <p>Conclusions</p> <p>This study provides initial support for the score reliability and validity of the FES(S) and SAFFE in people with PD.</p
Pathogen genomic surveillance status among lower resource settings in Asia
Asia remains vulnerable to new and emerging infectious diseases. Understanding how to improve next generation sequencing (NGS) use in pathogen surveillance is an urgent priority for regional health security. Here we developed a pathogen genomic surveillance assessment framework to assess capacity in low-resource settings in South and Southeast Asia. Data collected between June 2022 and March 2023 from 42 institutions in 13 countries showed pathogen genomics capacity exists, but use is limited and under-resourced. All countries had NGS capacity and seven countries had strategic plans integrating pathogen genomics into wider surveillance efforts. Several pathogens were prioritized for human surveillance, but NGS application to environmental and human–animal interface surveillance was limited. Barriers to NGS implementation include reliance on external funding, supply chain challenges, trained personnel shortages and limited quality assurance mechanisms. Coordinated efforts are required to support national planning, address capacity gaps, enhance quality assurance and facilitate data sharing for decision making
Discovery and Characterization of a Cryptic Secondary Binding Site in the Molecular Chaperone HSP70.
Heat Shock Protein 70s (HSP70s) are key molecular chaperones that are overexpressed in many cancers and often associated with metastasis and poor prognosis. It has proven difficult to develop ATP-competitive, drug-like small molecule inhibitors of HSP70s due to the flexible and hydrophilic nature of the HSP70 ATP-binding site and its high affinity for endogenous nucleotides. The aim of this study was to explore the potential for the inhibition of HSP70 through alternative binding sites using fragment-based approaches. A surface plasmon resonance (SPR) fragment screen designed to detect secondary binding sites in HSP70 led to the identification by X-ray crystallography of a cryptic binding site in the nucleotide-binding domain (NBD) of HSP70 adjacent to the ATP-binding site. Fragment binding was confirmed and characterized as ATP-competitive using SPR and ligand-observed NMR methods. Molecular dynamics simulations were applied to understand the interactions with the protein upon ligand binding, and local secondary structure changes consistent with interconversion between the observed crystal structures with and without the cryptic pocket were detected. A virtual high-throughput screen (vHTS) against the cryptic pocket was conducted, and five compounds with diverse chemical scaffolds were confirmed to bind to HSP70 with micromolar affinity by SPR. These results identified and characterized a new targetable site on HSP70. While targeting HSP70 remains challenging, the new site may provide opportunities to develop allosteric ATP-competitive inhibitors with differentiated physicochemical properties from current series
Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting in Patients with Coronary Artery Disease and Diabetic Nephropathy: A Single Center Experience
Background Patients with diabetic nephropathy (DN) and coronary artery disease (CAD) represent a subset of patients with high cardiovascular morbidity and mortality. The optimal revascularization strategy using either percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) remains controversial. The purpose of this study was to compare the clinical outcomes of PCI to CABG in DN patients with CAD. Methods The clinical and angiographic records of DN patients with CAD who underwent either CABG (n=52) or PCI (n=48) were retrospectively analyzed. Results The baseline characteristics were similar in the two groups except for the severity of the CAD. At 30 days, the death rate (PCI: 2.1% vs. CABG: 9.6%, p=0.21) and major adverse cardiac events (MACE) rate (PCI: 2.1% vs. CABG: 9.6%, p=0.21) were similar in comparisons between the PCI and CABG groups. At three years, the death rate (PCI: 18.8% vs. CABG: 19.2%, p=0.94) was similar between the PCI and CABG groups but the MACE rate (PCI: 47.9% vs. CABG: 21.2%, p=0.006) was higher in the PCI group compared to the CABG group. In addition, the repeat revascularization rate was higher in the PCI group compared to the CABG group (PCI: 12.5% vs. CABG: 1.9%, p=0.046). Conclusions The CABG procedure was associated with a lower incidence of MACE and repeat revascularization for up to three years of follow-up in DN patients with CAD. However, the overall survival rate was similar in the CABG and PCI groups. Therefore, CABG may be superior to PCI with regard to MACE and repeat revascularization.ope
- …