351 research outputs found

    The Phase Diagram of Crystalline Surfaces

    Get PDF
    We report the status of a high-statistics Monte Carlo simulation of non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of size up to 1282128^2 nodes. We impose free boundary conditions. The free energy is a gaussian spring tethering potential together with a normal-normal bending energy. Particular emphasis is given to the behavior of the model in the cold phase where we measure the decay of the normal-normal correlation function.Comment: 9 pages latex (epsf), 4 EPS figures, uuencoded and compressed. Contribution to Lattice '9

    New Renormalization Group Results for Scaling of Self-Avoiding Tethered Membranes

    Full text link
    The scaling properties of self-avoiding polymerized 2-dimensional membranes are studied via renormalization group methods based on a multilocal operator product expansion. The renormalization group functions are calculated to second order. This yields the scaling exponent nu to order epsilon^2. Our extrapolations for nu agree with the Gaussian variational estimate for large space dimension d and are close to the Flory estimate for d=3. The interplay between self-avoidance and rigidity at small d is briefly discussed.Comment: 97 pages, 120 .eps-file

    Quaternion Singular Value Decomposition based on Bidiagonalization to a Real Matrix using Quaternion Householder Transformations

    Full text link
    We present a practical and efficient means to compute the singular value decomposition (svd) of a quaternion matrix A based on bidiagonalization of A to a real bidiagonal matrix B using quaternionic Householder transformations. Computation of the svd of B using an existing subroutine library such as lapack provides the singular values of A. The singular vectors of A are obtained trivially from the product of the Householder transformations and the real singular vectors of B. We show in the paper that left and right quaternionic Householder transformations are different because of the noncommutative multiplication of quaternions and we present formulae for computing the Householder vector and matrix in each case

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    First-order transition of tethered membranes in 3d space

    Full text link
    We study a model of phantom tethered membranes, embedded in three-dimensional space, by extensive Monte Carlo simulations. The membranes have hexagonal lattice structure where each monomer is interacting with six nearest-neighbors (NN). Tethering interaction between NN, as well as curvature penalty between NN triangles are taken into account. This model is new in the sense that NN interactions are taken into account by a truncated Lennard-Jones potential including both repulsive and attractive parts. The main result of our study is that the system undergoes a first-order crumpling transition from low temperature flat phase to high temperature crumpled phase, in contrast with early numerical results on models of tethered membranes.Comment: 5 pages, 6 figure

    M.C.R.G. Study of Fixed-connectivity Surfaces

    Get PDF
    We apply Monte Carlo Renormalization group to the crumpling transition in random surface models of fixed connectivity. This transition is notoriously difficult to treat numerically. We employ here a Fourier accelerated Langevin algorithm in conjunction with a novel blocking procedure in momentum space which has proven extremely successful in λϕ4\lambda\phi^4. We perform two successive renormalizations in lattices with up to 64264^2 sites. We obtain a result for the critical exponent ν\nu in general agreement with previous estimates and similar error bars, but with much less computational effort. We also measure with great accuracy η\eta. As a by-product we are able to determine the fractal dimension dHd_H of random surfaces at the crumpling transition.Comment: 35 pages,Latex file, 6 Postscript figures uuencoded,uses psfig.sty 2 misspelled references corrected and one added. Paper unchange

    The Statistical Mechanics of Membranes

    Get PDF
    The fluctuations of two-dimensional extended objects membranes is a rich and exciting field with many solid results and a wide range of open issues. We review the distinct universality classes of membranes, determined by the local order, and the associated phase diagrams. After a discussion of several physical examples of membranes we turn to the physics of crystalline (or polymerized) membranes in which the individual monomers are rigidly bound. We discuss the phase diagram with particular attention to the dependence on the degree of self-avoidance and anisotropy. In each case we review and discuss analytic, numerical and experimental predictions of critical exponents and other key observables. Particular emphasis is given to the results obtained from the renormalization group epsilon-expansion. The resulting renormalization group flows and fixed points are illustrated graphically. The full technical details necessary to perform actual calculations are presented in the Appendices. We then turn to a discussion of the role of topological defects whose liberation leads to the hexatic and fluid universality classes. We finish with conclusions and a discussion of promising open directions for the future.Comment: 75 LaTeX pages, 36 figures. To appear in Physics Reports in the Proceedings of RG2000, Taxco, 199

    Universal Negative Poisson Ratio of Self Avoiding Fixed Connectivity Membranes

    Get PDF
    We determine the Poisson ratio of self-avoiding fixed-connectivity membranes, modeled as impenetrable plaquettes, to be sigma=-0.37(6), in statistical agreement with the Poisson ratio of phantom fixed-connectivity membranes sigma=-0.32(4). Together with the equality of critical exponents, this result implies a unique universality class for fixed-connectivity membranes. Our findings thus establish that physical fixed-connectivity membranes provide a wide class of auxetic (negative Poisson ratio) materials with significant potential applications in materials science.Comment: 4 pages, 3 figures, LaTeX (revtex) Published version - title changed, one figure improved and one reference change

    Fundamental representations and algebraic properties of biquaternions or complexified quaternions

    Get PDF
    The fundamental properties of biquaternions (complexified quaternions) are presented including several different representations, some of them new, and definitions of fundamental operations such as the scalar and vector parts, conjugates, semi-norms, polar forms, and inner and outer products. The notation is consistent throughout, even between representations, providing a clear account of the many ways in which the component parts of a biquaternion may be manipulated algebraically

    Generalizing the O(N)-field theory to N-colored manifolds of arbitrary internal dimension D

    Full text link
    We introduce a geometric generalization of the O(N)-field theory that describes N-colored membranes with arbitrary dimension D. As the O(N)-model reduces in the limit N->0 to self-avoiding polymers, the N-colored manifold model leads to self-avoiding tethered membranes. In the other limit, for inner dimension D->1, the manifold model reduces to the O(N)-field theory. We analyze the scaling properties of the model at criticality by a one-loop perturbative renormalization group analysis around an upper critical line. The freedom to optimize with respect to the expansion point on this line allows us to obtain the exponent \nu of standard field theory to much better precision that the usual 1-loop calculations. Some other field theoretical techniques, such as the large N limit and Hartree approximation, can also be applied to this model. By comparison of low and high temperature expansions, we arrive at a conjecture for the nature of droplets dominating the 3d-Ising model at criticality, which is satisfied by our numerical results. We can also construct an appropriate generalization that describes cubic anisotropy, by adding an interaction between manifolds of the same color. The two parameter space includes a variety of new phases and fixed points, some with Ising criticality, enabling us to extract a remarkably precise value of 0.6315 for the exponent \nu in d=3. A particular limit of the model with cubic anisotropy corresponds to the random bond Ising problem; unlike the field theory formulation, we find a fixed point describing this system at 1-loop order.Comment: 57 pages latex, 26 figures included in the tex
    corecore