1,906 research outputs found

    MPM based simulation for various solid deformation

    Get PDF
    Solid materials are responsible for many interesting phenomena. There are various types of them such as deformable objects and granular materials. In this paper, we present an MPM based framework to simulate the wide range of solid materials. In this framework, solid mechanics is based on the elastoplastic model, where we use von Mises criterion for deformable objects, and the Drucker-Prager model with non-associated plastic flow rules for granular materials. As a result, we can simulate different kinds of deformation of deformable objects and sloping failure for granular materials

    How liquid are banks : some evidence from the United Kingdom

    Get PDF
    This paper uses quantitative balance sheet liquidity analysis, based upon modified versions of the BCBS 1 and Moody’s 2 models, to provide indicators which would alarm the UK banks’ short and long-term liquidity positions respectively. These information will also underpin other research related liquidity risk to banks’ lending and performance. Our framework accurately reflect UK banks’ liquidity positions under both normal and stress scenarios based on the consistent accounting information under IFRS. It has significant contribution on Basel III liquidity ratios calculation. The study also presents fundamental financial information to facilitate analysis of banks’ business models and funding strategies. Using data for the period 2005-2010, we provide evidence that there have been variable liquidity strains across the UK banks in our sample. The estimated results show that Barclays Bank was the only bank to maintain a healthy short-term liquidity position throughout the sample period; while HSBC remained liquid in the short term, in both normal and stress conditions, except in 2008 and 2010. RBS, meanwhile, maintained healthy long-term liquidity positions from 2008 after receiving government injections of capital. And Santander UK was also able to post healthy long-term liquidity positions, except in 2009. However, the other four banks, the Bank of Scotland, Lloyds TSB, Natwest, and Standard Chartered, proved illiquid, on both a short-term and long-term basis, throughout the six-year period, with Natwest being by far the worst performer

    Evaluation of the impact of the GRACE risk score on the management and outcome of patients hospitalised with non-ST elevation acute coronary syndrome in the UK: protocol of the UKGRIS cluster-randomised registry-based trial

    Get PDF
    Introduction For non-ST-segment elevation acute coronary syndrome (NSTEACS) there is a gap between the use of class 1 guideline recommended therapies and clinical practice. The GRACE risk score is recommended in international guidelines for the risk stratification of NSTEACS, but its impact on adherence to guideline-indicated treatments and reducing adverse clinical outcomes is unknown. The objective of the UKGRIS trial is to assess the effectiveness of the GRACE risk score tool and associated treatment recommendations on the use of guideline-indicated care and clinical outcomes. Methods and Analysis The UK GRACE Risk Score Intervention Study (UKGRIS), a parallel-group cluster randomised registry-based controlled trial, will allocate hospitals in a 1:1 ratio to manage NSTEACS by standard care or according to the GRACE risk score and associated international guidelines. UKGRIS will recruit a minimum of 3000 patients from at least 30 English National Health Service hospitals and collect healthcare data from national electronic health records. The co-primary endpoints are the use of guideline-indicated therapies, and the composite of cardiovascular death, non-fatal myocardial infarction, new onset heart failure hospitalisation or cardiovascular readmission at 12 months. Secondary endpoints include duration of inpatient hospital stay over 12 months, EQ-5D-5L responses and utilities, unscheduled revascularisation and the components of the composite endpoint over 12 months follow-up. Ethics and Dissemination The study has ethical approval (North East - Tyne & Wear South Research Ethics Committee ref: 4/NE/1180). Findings will be announced at relevant conferences and published in peer-reviewed journals in line with the funder’s open access policy. Registration ISRCTN29731761, registered 12th January 2017

    GIVE: portable genome browsers for personal websites.

    Get PDF
    Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present an open source programming library called GIVE that facilitates the creation of personalized genome browsers without requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization of multiple types of genomics data, including genome annotation, "linear" quantitative data, and genome interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with collaborators. GIVE is available at: https://www.givengine.org/

    A distortion of very--high--redshift galaxy number counts by gravitational lensing

    Full text link
    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z >~ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ~ 0.5 percent, but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z >~ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ~ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ~ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.Comment: Nature, Jan. 13, 2011 issue (in press

    Local Optical Probe of Motion and Stress in a multilayer graphene NEMS

    Full text link
    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics

    Genetic Polymorphisms of the TYMS Gene Are Not Associated with Congenital Cardiac Septal Defects in a Han Chinese Population

    Get PDF
    Background: Clinical research indicates that periconceptional administration of folic acid can reduce the occurrence of congenital cardiac septal defects (CCSDs). The vital roles of folate exhibits in three ways: the unique methyl donor for DNA expression regulation, the de novo biosynthesis of purine and pyrimidine for DNA construction, and the serum homocysteine removal. Thymidylate synthase (TYMS) is the solo catalysis enzyme for the de novo synthesis of dTMP, which is the essential precursor of DNA biosynthesis and repair process. To examine the role of TYMS in Congenital Cardiac Septal Defects (CCSDs) risk, we investigated whether genetic polymorphisms in the TYMS gene associated with the CCSDs in a Han Chinese population. Method: Polymorphisms in the noncoding region of TYMS were identified via direct sequencing in 32 unrelated individuals composed of half CCSDs and half control subjects. Nine SNPs and two insertion/deletion polymorphisms were genotyped from two independent case-control studies involving a total of 529 CCSDs patients and 876 healthy control participants. The associations were examined by both single polymorphism and haplotype tests using logistic regression. Result: We found that TYMS polymorphisms were not related to the altered CCSDs risk, and even to the changed risk of VSDs subgroup, when tested in both studied groups separately or in combination. In the haplotype analysis, there were no haplotypes significantly associated with risks for CCSDs either. Conclusion: Our results show no association between common genetic polymorphisms of the regulatory region of th

    Laser Cooling of Optically Trapped Molecules

    Full text link
    Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap (ODT) and subsequently laser cooled within the trap. Starting with magneto-optical trapping, we sub-Doppler cool CaF and then load 150(30)150(30) CaF molecules into an ODT. Enhanced loading by a factor of five is obtained when sub-Doppler cooling light and trapping light are on simultaneously. For trapped molecules, we directly observe efficient sub-Doppler cooling to a temperature of 60(5)60(5) μK\mu\text{K}. The trapped molecular density of 8(2)×1078(2)\times10^7 cm3^{-3} is an order of magnitude greater than in the initial sub-Doppler cooled sample. The trap lifetime of 750(40) ms is dominated by background gas collisions.Comment: 5 pages, 5 figure

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells

    Collaborative prognostics in Social Asset Networks

    Get PDF
    With the spread of Internet of Things (IoT) technologies, assets have acquired communication, processing and sensing capabilities. In response, the fi eld of Asset Management has moved from fleet-wide failure models to individualised asset prognostics. Individualised models are seldom truly distributed, and often fail to capitalise the processing power of the asset fleet. This leads to hardly scalable machine learning centralised models that often must nd a compromise between accuracy and computational power. In order to overcome this, we present a novel theoretical approach to collaborative prognostics within the Social Internet of Things. We introduce the concept of Social Asset Networks, de ned as networks of cooperating assets with sensing, communicating and computing capabilities. In the proposed approach, the information obtained from the medium by means of sensors is synthesised into a Health Indicator, which determines the state of the asset. The Health Indicator of each asset evolves according to an equation determined by a triplet of parameters. Assets are given the form of the equation but they ignore their parametric values. To obtain these values, assets use the equation in order to perform a non-linear least squares t of their Health Indicator data. Using these estimated parameters, they are interconnected to a subset of collaborating assets by means of a similarity metric. We show how by simply interchanging their estimates, networked assets are able to precisely determine their Health Indicator dynamics and reduce maintenance costs. This is done in real time, with no centralised library, and without the need for extensive historical data. We compare Social Asset Networks with the typical self-learning and fleet-wide approaches, and show that Social Asset Networks have a faster convergence and lower cost. This study serves as a conceptual proof for the potential of collaborative prognostics for solving maintenance problems, and can be used to justify the implementation of such a system in a real industrial fleet.EU H202
    corecore