1,753 research outputs found

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Controlling the quantum stereodynamics of ultracold bimolecular reactions

    Full text link
    Chemical reaction rates often depend strongly on stereodynamics, namely the orientation and movement of molecules in three-dimensional space. An ultracold molecular gas, with a temperature below 1 uK, provides a highly unusual regime for chemistry, where polar molecules can easily be oriented using an external electric field and where, moreover, the motion of two colliding molecules is strictly quantized. Recently, atom-exchange reactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these exothermic and barrierless bimolecular reactions, KRb+KRb -> K2+Rb2, occur at a rate that rises steeply with increasing dipole moment. Here we show that the quantum stereodynamics of the ultracold collisions can be exploited to suppress the bimolecular chemical reaction rate by nearly two orders of magnitude. We use an optical lattice trap to confine the fermionic polar molecules in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each other only in a "side-by-side" collision, where the chemical reaction rate is suppressed by the repulsive dipole-dipole interaction. We show that the suppression of the bimolecular reaction rate requires quantum-state control of both the internal and external degrees of freedom of the molecules. The suppression of chemical reactions for polar molecules in a quasi-two-dimensional trap opens the way for investigation of a dipolar molecular quantum gas. Because of the strong, long-range character of the dipole-dipole interactions, such a gas brings fundamentally new abilities to quantum-gas-based studies of strongly correlated many-body physics, where quantum phase transitions and new states of matter can emerge.Comment: 19 pages, 4 figure

    Determinants of medication adherence to antihypertensive medications among a Chinese population using Morisky medication adherence scale

    Get PDF
    <b>Background and objectives</b> Poor adherence to medications is one of the major public health challenges. Only one-third of the population reported successful control of blood pressure, mostly caused by poor drug adherence. However, there are relatively few reports studying the adherence levels and their associated factors among Chinese patients. This study aimed to study the adherence profiles and the factors associated with antihypertensive drug adherence among Chinese patients.<p></p> <b>Methods</b> A cross-sectional study was conducted in an outpatient clinic located in the New Territories Region of Hong Kong. Adult patients who were currently taking at least one antihypertensive drug were invited to complete a self-administered questionnaire, consisting of basic socio-demographic profile, self-perceived health status, and self-reported medication adherence. The outcome measure was the Morisky Medication Adherence Scale (MMAS-8). Good adherence was defined as MMAS scores greater than 6 points (out of a total score of 8 points).<p></p> <b>Results</b> From 1114 patients, 725 (65.1%) had good adherence to antihypertensive agents. Binary logistic regression analysis was conducted. Younger age, shorter duration of antihypertensive agents used, job status being employed, and poor or very poor self-perceived health status were negatively associated with drug adherence.<p></p> <b>Conclusion</b> This study reported a high proportion of poor medication adherence among hypertensive subjects. Patients with factors associated with poor adherence should be more closely monitored to optimize their drug taking behavior

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    JunctionViewer: customizable annotation software for repeat-rich genomic regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repeat-rich regions such as centromeres receive less attention than their gene-rich euchromatic counterparts because the former are difficult to assemble and analyze. Our objectives were to 1) map all ten centromeres onto the maize genetic map and 2) characterize the sequence features of maize centromeres, each of which spans several megabases of highly repetitive DNA. Repetitive sequences can be mapped using special molecular markers that are based on PCR with primers designed from two unique "repeat junctions". Efficient screening of large amounts of maize genome sequence data for repeat junctions, as well as key centromere sequence features required the development of specific annotation software.</p> <p>Results</p> <p>We developed JunctionViewer to automate the process of identifying and differentiating closely related centromere repeats and repeat junctions, and to generate graphical displays of these and other features within centromeric sequences. JunctionViewer generates NCBI BLAST, WU-BLAST, cross_match and MUMmer alignments, and displays the optimal alignments and additional annotation data as concise graphical representations that can be viewed directly through the graphical interface or as PostScript<sup>® </sup>output.</p> <p>This software enabled us to quickly characterize millions of nucleotides of newly sequenced DNA ranging in size from single reads to assembled BACs and megabase-sized pseudochromosome regions. It expedited the process of generating repeat junction markers that were subsequently used to anchor all 10 centromeres to the maize map. It also enabled us to efficiently identify key features in large genomic regions, providing insight into the arrangement and evolution of maize centromeric DNA.</p> <p>Conclusions</p> <p>JunctionViewer will be useful to scientists who wish to automatically generate concise graphical summaries of repeat sequences. It is particularly valuable for those needing to efficiently identify unique repeat junctions. The scalability and ability to customize homology search parameters for different classes of closely related repeat sequences make this software ideal for recurring annotation (e.g., genome projects that are in progress) of genomic regions that contain well-defined repeats, such as those in centromeres. Although originally customized for maize centromere sequence, we anticipate this software to facilitate the analysis of centromere and other repeat-rich regions in other organisms.</p

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Organizational aspects and implementation of data systems in large-scale epidemiological studies in less developed countries

    Get PDF
    BACKGROUND: In the conduct of epidemiological studies in less developed countries, while great emphasis is placed on study design, data collection, and analysis, often little attention is paid to data management. As a consequence, investigators working in these countries frequently face challenges in cleaning, analyzing and interpreting data. In most research settings, the data management team is formed with temporary and unskilled persons. A proper working environment and training or guidance in constructing a reliable database is rarely available. There is little information available that describes data management problems and solutions to those problems. Usually a line or two can be obtained in the methods section of research papers stating that the data are doubly-entered and that outliers and inconsistencies were removed from the data. Such information provides little assurance that the data are reliable. There are several issues in data management that if not properly practiced may create an unreliable database, and outcomes of this database will be spurious. RESULTS: We have outlined the data management practices for epidemiological studies that we have modeled for our research sites in seven Asian countries and one African country. CONCLUSION: Information from this model data management structure may help others construct reliable databases for large-scale epidemiological studies in less developed countries

    Transcriptome Analysis of the Oriental Fruit Fly (Bactrocera dorsalis)

    Get PDF
    The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most economically important pests in the world, causing serious damage to fruit production. However, lack of genetic information on this organism is an obstacle to understanding the mechanisms behind its development and its ability to resist insecticides. Analysis of the B. dorsalis transcriptome and its expression profile data is essential to extending the genetic information resources on this species, providing a shortcut that will support studies on B. dorsalis.We performed de novo assembly of a transcriptome using short read sequencing technology (Illumina). The results generated 484,628 contigs, 70,640 scaffolds, and 49,804 unigenes. Of those unigenes, 27,455 (55.13%) matched known proteins in the NCBI database, as determined by BLAST search. Clusters of orthologous groups (COG), gene orthology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed to better understand the functions of these unigenes. Genes related to insecticide resistance were analyzed in additional detail. Digital gene expression (DGE) libraries showed differences in gene expression profiles at different developmental stages (eggs, third-instar larvae, pupae, and adults). To confirm the DGE results, the expression profiles of six randomly selected genes were analyzed.This transcriptome greatly improves our genetic understanding of B. dorsalis and makes a huge number of gene sequences available for further study, including both genes of known importance and genes of unknown function. The DGE data provide comprehensive insight into gene expression profiles at different developmental stages. This facilitates the study of the role of each gene in the developmental process and in insecticide resistance

    Surveillance of Schistosoma japonicum Infection in Domestic Ruminants in the Dongting Lake Region, Hunan Province, China

    Get PDF
    Background: Schistosomiasis japonica is prevalent in Asian countries and it remains a major public health problem in China. The major endemic foci are the marsh and lake regions of southern China, particularly the Dongting Lake region bordering Hunan and Hubei provinces, and the Poyang Lake region in Jiangxi province. Domestic ruminants, especially bovines, have long been considered to play a major role in the transmission of Schistosoma japonicum to humans. Methods and Findings: A miracidial hatching technique was used to investigate the prevalence of S. japonicum infections in domestic ruminants and field feces collected from two towns located to the south and east of Dongting Lake, Hunan province, between 2005 and 2010. The overall prevalence of infection was not significantly reduced from 4.93 % in 2005 to 3.64 % in 2008, after which it was maintained at this level. Bovines comprised 23.5–58.2 % of the total infected ruminants, while goats comprised 41.8–76.5%. Infection rates in cattle and goats were significantly higher than those found in buffalo in most study years. The prevalence in buffalo younger than three years was significantly higher than that in those aged over three years. All the positive field samples of feces were derived from bovines in Nandashan. In Matang Town, 61.22 % of the positive field feces were from bovines, while the rest were from goats. The positive rates for field feces were approximately the same in April and November/October. Conclusions: The present study found that bovines and goats are major sources of S. japonicum infection in the Dongtin
    • …
    corecore