39 research outputs found

    Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates

    Full text link
    Solitons are among the most distinguishing fundamental excitations in a wide range of non-linear systems such as water in narrow channels, high speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading and focusing, solitons are wavepackets, which share some exceptional generic features like form-stability and particle-like properties. Ultra-cold quantum gases represent very pure and well-controlled non-linear systems, therefore offering unique possibilities to study soliton dynamics. Here we report on the first observation of long-lived dark and dark-bright solitons with lifetimes of up to several seconds as well as their dynamics in highly stable optically trapped 87^{87}Rb Bose-Einstein condensates. In particular, our detailed studies of dark and dark-bright soliton oscillations reveal the particle-like nature of these collective excitations for the first time. In addition, we discuss the collision between these two types of solitary excitations in Bose-Einstein condensates.Comment: 9 pages, 4 figure

    A new approach to in silico SNP detection and some new SNPs in the Bacillus anthracis genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bacillus anthracis </it>is one of the most monomorphic pathogens known. Identification of polymorphisms in its genome is essential for taxonomic classification, for determination of recent evolutionary changes, and for evaluation of pathogenic potency.</p> <p>Findings</p> <p>In this work three strains of the <it>Bacillus anthracis </it>genome are compared and previously unpublished single nucleotide polymorphisms (SNPs) are revealed. Moreover, it is shown that, despite the highly monomorphic nature of <it>Bacillus anthracis</it>, the SNPs are (1) abundant in the genome and (2) distributed relatively uniformly across the sequence.</p> <p>Conclusions</p> <p>The findings support the proposition that SNPs, together with indels and variable number tandem repeats (VNTRs), can be used effectively not only for the differentiation of perfect strain data, but also for the comparison of moderately incomplete, noisy and, in some cases, unknown <it>Bacillus anthracis </it>strains. In the case when the data is of still lower quality, a new DNA sequence fingerprinting approach based on recently introduced markers, based on combinatorial-analytic concepts and called cyclic difference sets, can be used.</p

    Sports Participation and Juvenile Delinquency: A Meta-Analytic Review

    Get PDF
    Participation in sports activities is very popular among adolescents, and is frequently encouraged among youth. Many psychosocial health benefits in youth are attributed to sports participation, but to what extent this positive influence holds for juvenile delinquency is still not clear on both the theoretical and empirical level. There is much controversy on whether sports participation should be perceived as a protective or a risk factor for the development of juvenile delinquency. A multilevel meta-analysis of 51 published and unpublished studies, with 48 independent samples containing 431 effect sizes and N = 132,366 adolescents, was conducted to examine the relationship between sports participation and juvenile delinquency and possible moderating factors of this association. The results showed that there is no overall significant association between sports participation and juvenile delinquency, indicating that adolescent athletes are neither more nor less delinquent than non-athletes. Some study, sample and sports characteristics significantly moderated the relationship between sports participation and juvenile delinquency. However, this moderating influence was modest. Implications for theory and practice concerning the use of sports to prevent juvenile delinquency are discussed. Keywords Sports participation Juvenile delinquency Multilevel meta-analysis Revie

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe

    Interferometers with Complete Coverage of Rectangular Domains in the U,V-Plane

    No full text

    Distribution of Elements on Cycles of Linear Recurrences over Galois Field

    No full text

    On twin prime power Hadamard matrices

    No full text
    In this paper, we show that exactly one Hadamard matrix constructed using the twin prime power method is cocyclic. We achieve this by showing that the action of the automorphism group of a Hadamard matrix developed from a difference set induces a 2-transitive action on the rows of the matrix or is intransitive. We then use Ito’s classification of Hadamard matrices with 2-transitive automorphism groups to derive a necessary condition on the order of a cocyclic Hadamard matrix developed from a difference set. This work answers a research problem posed by K.J. Horadam, and exhibits the first known infinite family of Hadamard matrices which are not cocyclic

    Useful Classes of Redundant Arrays for Imaging Applications

    No full text
    We discuss several classes of redundant arrays. These arrays have applications for indirect imaging in a variety of fields including coded-aperture imaging, interferometric radio imaging, and optical imaging in the presence of atmospheric turbulence. The specific classes we will discuss are all based on Galois fields and include: antisymmetric redundant arrays (ARAs) which have as a subset the hexagonal uniformly redundant arrays (HURAs), non-redundant arrays (NRAs), and the general class of quadratic residue arrays (QRAs)
    corecore