238 research outputs found

    A shared biomechanical environment for bone and posture development in children

    Get PDF
    Background Context: In each specific habitual standing posture, gravitational forces determine the mechanical setting provided to skeletal structures. Bone quality and resistance to physical stress is highly determined by habitual mechanical stimulation. However, the relationship between bone properties and sagittal posture has never been studied in children. Purpose: This study aimed to investigate the association between bone physical properties and sagittal standing postural patterns in 7-year-old children. We also analyzed the relationship between fat or fat-free mass and postural patterns. Study Design: Cross-sectional evaluation. Patient Sample: This study was performed in a sample of 1,138 girls and 1,260 boys at 7 years of age participating in the Generation XXI study, a population-based cohort of children followed since birth (2005–2006) and recruited in Porto, Portugal. Outcome Measures: Sagittal standing posture was measured through photographs of the sagittal right view of children in the standing position. Three angles were considered to quantify the magnitude of major curves of the spine and an overall balance measure (trunk, lumbar, and sway angles). Postural patterns were identified using latent profile analysis in Mplus. Methods: Weight and height were measured. Total body less head fat or fat-free mass and bone properties were estimated from whole-body dual-energy X-ray absorptiometry scans. The associations of fat or fat-free mass and bone physical properties with postural patterns were jointly estimated in latent profile analysis using multinomial logistic regressions. Results:The identified patterns were labeled as Sway, Flat, and “Neutral to Hyperlordotic” (in girls), and “Sway to Neutral,” Flat, and Hyperlordotic (in boys). In both genders, children in the Flat pattern showed the lowest body mass index, and children with a rounded posture presented the highest: mean differences varying from −0.86 kg/m2 to 0.60 kg/m2 in girls and from −0.70 kg/m2 to 0.62 kg/m2 in boys (vs. Sway or “Sway to Neutral”). Fat and fat-free mass were inversely associated with a Flat pattern and positively associated with a rounded posture: odds ratio (OR) of 0.23 per standard deviation (SD) fat and 0.70 per SD fat-free mass for the Flat pattern, and 1.85 (fat) and 1.43 (fat-free) for the Hyperlordotic pattern in boys, with similar findings in girls. The same direction of relationships was observed between bone physical properties and postural patterns. A positive association between bone (especially bone mineral density) and a rounded posture was robust to adjustment for age, height, and body composition (girls: OR=1.79, p=.006 fat-adjusted, OR=2.00, p=.014 fat-free mass adjusted; boys: OR=2.02, p=.002 fat-adjusted, OR=2.42, p<.001 fat-free mass adjusted). Conclusions: In this population-based pediatric setting, there was an inverse association between bone physical properties and a Flat posture. Bone and posture were more strongly positively linked in a rounded posture. Our results support that both bone properties and posture mature in a shared and interrelated mechanical environment, probably modulated by pattern-specific anthropometrics and body composition.Generation XXI was funded by FEDER through the Operational Programme Competitiveness and Internationalization and by national funds through the FCT – Fundação para a Ciência e a Tecnologia via grants POCI-01-0145-FEDER-016838 and POCI-01-0145-FEDER-016837, under the projects PTDC/DTP-EPI/1687/2014 and PTDC/DTP-EPI/3306/2014. Support by Administração Regional de Saúde Norte (Ministry of Health), Fundação Calouste Gulbenkian and Unidade de Investigação em Epidemiologia - Instituto de Saúde Pública da Universidade do Porto (EPIUnit) (POCI-01-0145-FEDER-006862; UID/DTP/04750/2013) is also acknowledged. Araújo FA and Lucas R were supported by grants SFRH/BD/85398/2012 and SFRH/BPD/88729/2012, co-funded by FCT and the POPH/FSE. The authors also gratefully acknowledge the families enrolled in Generation XXI, and the contribution of the members of the research team and staff

    The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases

    Get PDF
    Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Assis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Gomes Araújo, Flávio M.. Fundación Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. Fundación Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Oliveira, Guilherme. Instituto Tecnológico Vale; Brasil. Fundación Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation

    Get PDF
    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the northwest hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities’ long-term survival

    Early identification of first-year students at risk of dropping out of high-school entry medical school: the usefulness of teachers' ratings of class participation

    Get PDF
    Dropping out from undergraduate medical education is costly for students, medical schools, and society in general. Therefore, the early identification of potential dropout students is important. The contribution of personal features to dropout rates has merited exploration. However, there is a paucity of research on aspects of student experience that may lead to dropping out. In this study, underpinned by theoretical models of student commitment, involvement, and engagement, we explored the hypothesis of using inferior participation as an indicator of a higher probability of dropping out in year 1. Class participation was calculated as an aggregate score based on teachers' daily observations in class. The study used a longitudinal dataset of six cohorts of high-school entry students (N = 709, 67% females) in one medical school with an annual intake of 120 students. The findings confirmed the initial hypothesis and showed that lower scores of class participation in year 1 added predictive ability to pre-entry characteristics (Pseudo-R2 raised from 0.22 to 0.28). Even though the inclusion of course failure in year 1 resulted in higher explanatory power than participation in class (Pseudo-R2 raised from 0.28 to 0.63), ratings of class participation may be advantageous to anticipate dropout identification, as those can be collected prior to course failure. The implications for practice are that teachers' ratings of class participation can play a role in indicating medical students who may eventually drop out. We conclude that the scores of class participation can contribute to flagging systems for the early detection of student dropouts.(undefined)info:eu-repo/semantics/acceptedVersio

    Infective endocarditis in intravenous drug abusers: an update

    Get PDF
    Infective endocarditis despite advances in diagnosis remains a common cause of hospitalization, with high morbidity and mortality rates. Through literature review it is possible to conclude that polymicrobial endocarditis occurs mainly in intravenous drug abusers with predominance in the right side of the heart, often with tricuspid valve involvement. This fact can be associated with the type of drug used by the patients; therefore, knowledge of the patient's history is critical for adjustment of the therapy. It is also important to emphasize that the most common combinations of organisms in polymicrobial infective endocarditis are: Staphylococcus aureus, Streptococcus pneumonia and Pseudomonas aeruginosa, as well as mixed cultures of Candida spp. and bacteria. A better understanding of the epidemiology and associated risk factors are required in order to develop an efficient therapy, although PE studies are difficult to perform due to the rarity of cases and lack of prospective cohorts.This work was supported by Portuguese Foundation for Science and Technology (FCT) through the grants SFRH/BPD/47693/2008, SFRH/BPD/20987/2004 and SFRH/BPD/72632/2010 attributed to Claudia Sousa, Claudia Botelho and Diana Rodrigues, respectively

    Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation

    Get PDF
    Conservation planners represent many aspects of biodiversity by using surrogates with spatial distributions readily observed or quantified, but tests of their effectiveness have produced varied and conflicting results. We identified four factors likely to have a strong influence on the apparent effectiveness of surrogates: (1) the choice of surrogate; (2) differences among study regions, which might be large and unquantified (3) the test method, that is, how effectiveness is quantified, and (4) the test features that the surrogates are intended to represent. Analysis of an unusually rich dataset enabled us, for the first time, to disentangle these factors and to compare their individual and interacting influences. Using two data-rich regions, we estimated effectiveness using five alternative methods: two forms of incidental representation, two forms of species accumulation index and irreplaceability correlation, to assess the performance of ‘forest ecosystems’ and ‘environmental units’ as surrogates for six groups of threatened species—the test features—mammals, birds, reptiles, frogs, plants and all of these combined. Four methods tested the effectiveness of the surrogates by selecting areas for conservation of the surrogates then estimating how effective those areas were at representing test features. One method measured the spatial match between conservation priorities for surrogates and test features. For methods that selected conservation areas, we measured effectiveness using two analytical approaches: (1) when representation targets for the surrogates were achieved (incidental representation), or (2) progressively as areas were selected (species accumulation index). We estimated the spatial correlation of conservation priorities using an index known as summed irreplaceability. In general, the effectiveness of surrogates for our taxa (mostly threatened species) was low, although environmental units tended to be more effective than forest ecosystems. The surrogates were most effective for plants and mammals and least effective for frogs and reptiles. The five testing methods differed in their rankings of effectiveness of the two surrogates in relation to different groups of test features. There were differences between study areas in terms of the effectiveness of surrogates for different test feature groups. Overall, the effectiveness of the surrogates was sensitive to all four factors. This indicates the need for caution in generalizing surrogacy tests
    corecore