854 research outputs found

    Two-Fermion Bound States within the Bethe-Salpeter Approach

    Full text link
    To solve the spinor-spinor Bethe-Salpeter equation in Euclidean space we propose a novel method related to the use of hyperspherical harmonics. We suggest an appropriate extension to form a new basis of spin-angular harmonics that is suitable for a representation of the vertex functions. We present a numerical algorithm to solve the Bethe-Salpeter equation and investigate in detail the properties of the solution for the scalar, pseudoscalar and vector meson exchange kernels including the stability of bound states. We also compare our results to the non relativistic ones and to the results given by light front dynamics.Comment: 32 pages, XIII Tables, 8 figure

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections

    Full text link
    The weak gravity conjecture and the shear viscosity to entropy density bound place constraints on low energy effective field theories that may help to distinguish which theories can be UV completed. Recently, there have been suggestions of a possible correlation between the two constraints. In some interesting cases, the behavior was precisely such that the conjectures were mutually exclusive. Motivated by these works, we study the mass to charge and shear viscosity to entropy density ratios for charged AdS5 black branes, which are holographically dual to four-dimensional CFTs at finite temperature. We study a family of four-derivative and six-derivative perturbative corrections to these backgrounds. We identify the region in parameter space where the two constraints are satisfied and in particular find that the inclusion of the next-to-leading perturbative correction introduces wider possibilities for the satisfaction of both constraints.Comment: 24 pages, 6 figures, v2: published version, refs added, minor clarificatio

    The prevalence of disordered eating in elite male and female soccer players

    Get PDF
    Purpose To examine the prevalence of disordered eating (DE) in elite male and female soccer players and the influence of perfectionism. Methods Using a cross-sectional design, elite male (n = 137) and female (n = 70) soccer players and non-athlete controls (n = 179) completed the clinical perfectionism questionnaire (CPQ-12) and the eating attitudes test (EAT-26) to assess perfectionism and DE risk, respectively. Results Male soccer players had higher EAT-26 scores than controls (10.4 ± 9.9 vs. 6.8 ± 6.7; P=0.001) but there were no differences in the prevalence of clinical levels of DE (EAT-26 score ≥20) (15 vs. 5%, respectively; X2 = 0.079) The proportion of females with DE risk was higher in controls (EAT-26: 13.9 ± 11.6 (25% of population)) than female players (EAT-26: 10.0 ± 9.0% (11% of population)) (X2 = 0.001). With linear regression, perfectionism explained 20% of the variation in DE risk in males (P=0.001); in females, athletic status (player vs. control) and perfectionism were significant predictors of DE risk, explaining 21% of the variation (P=0.001). Male reserve team players had higher EAT-26 (+3.5) and perfectionism (+2.7) scores than first-team players (P<0.05). There were no differences in the prevalence of DE risk between the male and female soccer players (X2 = 0.595). Conclusions The prevalence of DE risk was not different in elite male and female soccer players; in fact, the prevalence was greatest in non-athlete female controls. Perfectionism is a significant predictor of DE risk in males and females

    Thermalization in Weakly Coupled Nonabelian Plasmas

    Full text link
    We investigate how relativistic, nonabelian plasmas approach equilibrium in a general context. Our treatment is entirely parametric and for small Yang-Mills coupling α\alpha. First we study isotropic systems with an initially nonequilibrium momentum distribution. We consider both the case of initially very high occupancy and initially very low occupancy. Then we consider systems which are anisotropic. We consider both weak anisotropy and large anisotropy, and allow the occupancy to be parametrically large or small. Writing the typical momentum of an initial excitation as Q and the final temperature as T, full equilibration occurs in a time t ~ \alpha^{-2}/T for T > Q, and t ~ \alpha^{-2} Q^{1/2} T^{-3/2} for T < Q, unless the initial system is sufficiently anisotropic and T > \alpha^{2/3} Q, in which case equilibration occurs somewhat faster, t ~ \alpha^{-13/7} Q^{5/7} T^{-12/7} (or \alpha^{-2}/T if that is longer).Comment: 55 pages including many figures, but with a comprehensive review of results in the first 6 pages

    Haploinsufficiency for Translation Elongation Factor eEF1A2 in Aged Mouse Muscle and Neurons Is Compatible with Normal Function

    Get PDF
    Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10
    • …
    corecore