861 research outputs found

    Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

    Get PDF
    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag

    Wake Development behind Paired Wings with Tip and Root Trailing Vortices: Consequences for Animal Flight Force Estimates

    Get PDF
    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals

    Cerebrospinal Fluid Stanniocalcin-1 as a Biomarker for Alzheimer's Disease and Other Neurodegenerative Disorders

    Get PDF
    Stanniocalcin-1 (STC-1) is a nerve cell-enriched protein involved in intracellular calcium homeostasis regulation. Changes in calcium regulation are hypothesized to play a role in the pathophysiology of Alzheimer's disease (AD). The expression of STC-1 increases in response to ischemic stroke, but whether it is altered in neurodegenerative disorder, particularly Alzheimer's disease (AD), has not been investigated before. We measured STC-1 in cerebrospinal fluid (CSF) samples from a total of 163 individuals including AD, prodromal AD (pAD), mixed AD, stable mild cognitive impairment (sMCI), and diagnoses of other dementia than AD, as well as cognitively normal controls (CNC) enrolled at academic centers in France and Sweden. STC-1 concentration was reliably measureable in all CSF samples and was significantly increased in the initial exploratory cohort of neurochemically enriched AD patients versus AD biomarker-negative controls. In the second cohort, STC-1 was increased in AD versus pAD, and other dementia disorders, but the difference was not statistically significant. In the third cohort, there was no significant difference in STC-1 concentration between AD and CNC; however, STC-1 concentration was significantly decreased in patients with other dementia disorders compared with AD and CNC. Taken together, CSF STC-1 showed an increasing trend in AD, but the findings were not consistent across the three study cohorts. In contrast, CSF STC-1 concentrations were reduced in patients with dementia diagnoses other than AD, as compared with both AD patients and CNC. The findings from these studies suggest CSF STC-1 as a potential biomarker in differential diagnosis of dementias

    Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds

    Get PDF
    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats

    Identification of Achaete-scute complex-like 1 (ASCL1) target genes and evaluation of DKK1 and TPH1 expression in pancreatic endocrine tumours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>ASCL1 </it>role in pancreatic endocrine tumourigenesis has not been established. Recently it was suggested that ASCL1 negatively controls expression of the Wnt signalling antagonist <it>DKK1</it>. Notch signalling regulates expression of TPH1, the rate limiting enzyme in the biosyntesis of serotonin. Understanding the development and proliferation of pancreatic endocrine tumours (PETs) is essential for the development of new therapies.</p> <p>Methods</p> <p><it>ASCL1 </it>target genes in the pancreatic endocrine tumour cell line BON1 were identified by RNA interference and microarray expression analysis. Protein expressions of selected target genes in PETs were evaluated by immunohistochemistry.</p> <p>Results</p> <p>158 annotated <it>ASCL1 </it>target genes were identified in BON1 cells, among them DKK1 and TPH1 that were negatively regulated by ASCL1. An inverse relation of ASCL1 to DKK1 protein expression was observed for 15 out of 22 tumours (68%). Nine tumours displayed low ASCL1/high DKK1 and six tumours high ASCL1/low DKK1 expression. Remaining PETs showed high ASCL1/high DKK1 (n = 4) or low ASCL1/low DKK1 (n = 3) expression. Nine of twelve analysed PETs (75%) showed TPH1 expression with no relation to ASCL1.</p> <p>Conclusion</p> <p>A number of genes with potential importance for PET tumourigenesis have been identified. <it>ASCL1 </it>negatively regulated the Wnt signalling antagonist <it>DKK1</it>, and <it>TPH1 </it>expression in BON1 cells. In concordance with these findings DKK1 showed an inverse relation to ASCL1 expression in a subset of PETs, which may affect growth control by the Wnt signalling pathway.</p

    Middleborns disadvantaged? testing birth-order effects on fitness in pre-industrial finns

    Get PDF
    Parental investment is a limited resource for which offspring compete in order to increase their own survival and reproductive success. However, parents might be selected to influence the outcome of sibling competition through differential investment. While evidence for this is widespread in egg-laying species, whether or not this may also be the case in viviparous species is more difficult to determine. We use pre-industrial Finns as our model system and an equal investment model as our null hypothesis, which predicts that (all else being equal) middleborns should be disadvantaged through competition. We found no overall evidence to suggest that middleborns in a family are disadvantaged in terms of their survival, age at first reproduction or lifetime reproductive success. However, when considering birth-order only among same-sexed siblings, first-, middle-and lastborn sons significantly differed in the number of offspring they were able to rear to adulthood, although there was no similar effect among females. Middleborn sons appeared to produce significantly less offspring than first-or lastborn sons, but they did not significantly differ from lastborn sons in the number of offspring reared to adulthood. Our results thus show that taking sex differences into account is important when modelling birth-order effects. We found clear evidence of firstborn sons being advantaged over other sons in the family, and over firstborn daughters. Therefore, our results suggest that parents invest differentially in their offspring in order to both preferentially favour particular offspring or reduce offspring inequalities arising from sibling competition

    Quantification of Retrograde Axonal Transport in the Rat Optic Nerve by Fluorogold Spectrometry

    Get PDF
    PURPOSE: Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissue lysate. METHODS: To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC) of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15). In subsequent experiments axona transport was impaired by optic nerve crush (n = 3), laser-induced ocular hypertension (n = 5) or colchicine treatment to the SC (n = 10). RESULTS: Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG)), from the emission spectrum. c(FG) is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG) monotonously increases with time (p = 0.002). Optic nerve axonal damage caused a significant decrease of c(FG) (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006). Lysates are amenable to subsequent protein analysis. CONCLUSIONS: Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses

    Differential orientation effect in the neural response to interacting biological motion of two agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent behavioral study demonstrated that the meaningful interaction of two agents enhances the detection sensitivity of biological motion (BM), however, it remains unclear when and how the 'interaction' information of two agents is represented in our neural system. To clarify this point, we used magnetoencephalography and introduced a novel experimental technique to extract a neuromagnetic response relating to two-agent BM perception. We then investigated how this response was modulated by the interaction of two agents. In the present experiment, we presented two kinds of visual stimuli (interacting and non-interacting BM) with two orientations (upright and inverted).</p> <p>Results</p> <p>We found a neuromagnetic response in the bilateral occipitotemporal region, on average 300 – 400 ms after the onset of a two-agent BM stimulus. This result showed that interhemispheric differences were apparent for the peak amplitudes. For the left hemisphere, the orientation effect was manifest when the two agents were made to interact, and the interaction effect was manifest when the stimulus was inverted. In the right hemisphere, the main effects of both orientation and interaction were significant, suggesting that the peak amplitude was attenuated when the visual stimulus was inverted or made to interact.</p> <p>Conclusion</p> <p>These results demonstrate that the 'interaction' information of two agents can affect the neural activities in the bilateral occipitotemporal region, on average 300 – 400 ms after the onset of a two-agent BM stimulus, however, the modulation was different between hemispheres: the left hemisphere is more concerned with dynamics, whereas the right hemisphere is more concerned with form information.</p

    Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice.

    No full text
    The highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load. This phenotype did not map to the NS gene segment, and NS1 protein of H5N1 virus functioned as a type I IFN antagonist as efficient as NS1 of H1N1 or H3N2 viruses. Instead we discovered that the internal genes of H5N1 virus supported a much higher level of replication of viral RNAs in myeloid cells in vitro but not in epithelial cells and that this was associated with high induction of type I IFN in myeloid cells. We also found that in vivo during H5N1 recombinant virus infection cells of haematopoetic origin were infected and produced type I IFN and proinflammatory cytokines. Taken together our data infer that human and avian influenza viruses are differently controlled by host factors in alternative cell types; internal gene segments of avian H5N1 virus uniquely drove high viral replication in myeloid cells, which triggered an excessive cytokine production, resulting in severe immunopathology
    • …
    corecore