129 research outputs found

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    A functional perspective on machine learning via programmable induction and abduction

    Get PDF
    We present a programming language for machine learning based on the concepts of ‘induction’ and ‘abduction’ as encountered in Peirce’s logic of science. We consider the desirable features such a language must have, and we identify the ‘abductive decoupling’ of parameters as a key general enabler of these features. Both an idealised abductive calculus and its implementation as a PPX extension of OCaml are presented, along with several simple examples

    A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inverse-QSAR problem seeks to find a new molecular descriptor from which one can recover the structure of a molecule that possess a desired activity or property. Surprisingly, there are very few papers providing solutions to this problem. It is a difficult problem because the molecular descriptors involved with the inverse-QSAR algorithm must adequately address the forward QSAR problem for a given biological activity if the subsequent recovery phase is to be meaningful. In addition, one should be able to construct a feasible molecule from such a descriptor. The difficulty of recovering the molecule from its descriptor is the major limitation of most inverse-QSAR methods.</p> <p>Results</p> <p>In this paper, we describe the reversibility of our previously reported descriptor, the vector space model molecular descriptor (VSMMD) based on a vector space model that is suitable for kernel studies in QSAR modeling. Our inverse-QSAR approach can be described using five steps: (1) generate the VSMMD for the compounds in the training set; (2) map the VSMMD in the input space to the kernel feature space using an appropriate kernel function; (3) design or generate a new point in the kernel feature space using a kernel feature space algorithm; (4) map the feature space point back to the input space of descriptors using a pre-image approximation algorithm; (5) build the molecular structure template using our VSMMD molecule recovery algorithm.</p> <p>Conclusion</p> <p>The empirical results reported in this paper show that our strategy of using kernel methodology for an inverse-Quantitative Structure-Activity Relationship is sufficiently powerful to find a meaningful solution for practical problems.</p

    Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS

    Get PDF
    OBJECTIVE: Pulmonary hypertension is a characteristic feature of acute respiratory distress syndrome (ARDS) and contributes to mortality. Administration of sildenafil in ambulatory patients with pulmonary hypertension improves oxygenation and ameliorates pulmonary hypertension. Our aim was to determine whether sildenafil is beneficial for patients with ARDS. DESIGN: Prospective, open-label, multicenter, interventional cohort study. SETTING: Medical-surgical ICU of two university hospitals. PATIENTS: Ten consecutive patients meeting the NAECC criteria for ARDS. INTERVENTIONS: A single dose of 50 mg sildenafil citrate administered via a nasogastric tube. MAIN RESULTS: Administration of sildenafil in patients with ARDS decreased mean pulmonary arterial pressure from 25 to 22 mmHg (P = 0.022) and pulmonary artery occlusion pressure from 16 to 13 mmHg (P = 0.049). Systemic mean arterial pressures were markedly decreased from 81 to 75 mmHg (P = 0.005). Sildenafil did not improve pulmonary arterial oxygen tension, but resulted in a further increase in the shunt fraction. CONCLUSION: Although sildenafil reduced pulmonary arterial pressures during ARDS, the increased shunt fraction and decreased arterial oxygenation render it unsuitable for the treatment of patients with ARD

    TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells

    Get PDF
    Tumour growth is tightly related to new blood vessel formation, tissue remodelling and invasiveness capacity. A number of tissular factors fuel the growth of glioblastoma multiforme, the most aggressive brain neoplasm. In fact, gene array analyses demonstrated that the proapoptotic cytokine tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibited mRNA expression of VEGF, along with those of matrix metalloproteinase-2 (MMP-2), its inhibitor tissue inhibitor of matrix metalloproteinases-2 (TIMP-2), as well as the tumour invasiveness-related gene secreted protein acid rich in cysteine (SPARC) in different human glioblastoma cell lines. Particularly, VEGF mRNA and protein expression and release from glioblastoma cells were also inhibited by TRAIL. The latter also exerted antimitogenic effects on human umbilical vein endothelial cells (HUVECs). With the same cells, TRAIL inhibited new vessel formation in the in vitro matrigel model, as well as it exerted powerful inhibition of blood vessel formation induced by an angiogenic cocktail administered in subcutaneous pellets in vivo in the C57 mouse. Moreover, the expression of MMP-2, its inhibitor TIMP-2 and the tumour invasiveness-related protein SPARC were effectively inhibited by TRAIL in glioblastoma cell lines. In conclusion, our data indicate that TRAIL inhibits the orchestra of factors contributing to glioblastoma biological aggressiveness. Thus, the TRAIL system could be regarded as a molecular target to exploit for innovative therapy of this type of tumour

    A Genome Wide Association Scan of Bovine Tuberculosis Susceptibility in Holstein-Friesian Dairy Cattle

    Get PDF
    peer-reviewedBackground: Bovine tuberculosis is a significant veterinary and financial problem in many parts of the world. Although many factors influence infection and progression of the disease, there is a host genetic component and dissection of this may enlighten on the wider biology of host response to tuberculosis. However, a binary phenotype of presence/absence of infection presents a noisy signal for genomewide association study. Methodology/Principal Findings: We calculated a composite phenotype of genetic merit for TB susceptibility based on disease incidence in daughters of elite sires used for artificial insemination in the Irish dairy herd. This robust measure was compared with 44,426 SNP genotypes in the most informative 307 subjects in a genome wide association analysis. Three SNPs in a 65 kb genomic region on BTA 22 were associated (i.e. p,1025, peaking at position 59588069, p = 4.0261026) with tuberculosis susceptibility. Conclusions/Significance: A genomic region on BTA 22 was suggestively associated with tuberculosis susceptibility; it contains the taurine transporter gene SLC6A6, or TauT, which is known to function in the immune system but has not previously been investigated for its role in tuberculosis infection

    Mechanisms and treatment of ischaemic stroke: insights from genetic associations

    Get PDF
    The precise pathophysiology of ischaemic stroke is unclear, and a greater understanding of the different mechanisms that underlie large-artery, cardioembolic and lacunar ischaemic stroke subtypes would enable the development of more-effective, subtype-specific therapies. Genome-wide association studies (GWASs) are identifying novel genetic variants that associate with the risk of stroke. These associations provide insight into the pathophysiological mechanisms, and present opportunities for novel therapeutic approaches. In this Review, we summarize the genetic variants that have been linked to ischaemic stroke in GWASs to date and discuss the implications of these associations for both our understanding and treatment of ischaemic stroke. The majority of genetic variants identified are associated with specific subtypes of ischaemic stroke, implying that these subtypes have distinct genetic architectures and pathophysiological mechanisms. The findings from the GWASs highlight the need to consider whether therapies should be subtype-specific. Further GWASs that include large cohorts are likely to provide further insights, and emerging technologies will complement and build on the GWAS findings
    corecore