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Abstract. We present a programming language for machine learning
based on the concepts of ‘induction’ and ‘abduction’ as encountered in
Peirce’s logic of science. We consider the desirable features such a lan-
guage must have, and we identify the ‘abductive decoupling’ of parame-
ters as a key general enabler of these features. Both an idealised abduc-
tive calculus and its implementation as a PPX extension of OCaml are
presented, along with several simple examples.

1 A principled functional language for machine learning

What is the right programming language for machine learning? This question
can be answered in two ways. A first possible answer could take an algorithmic
point of view and try to identify those constructs which are most used in machine
learning programs, delivering an implementation in which the balance of various
optimisation trade-offs favours such constructs. This way of answering the ques-
tion has been studied quite extensively (e.g. [1, 2]). A different methodological
approach to this question is to first put machine learning in a logical perspective,
to provide a guideline in the development of a programming language. Connect-
ing deductive systems to computation is a preferred methodology of functional
programming language design [3]. This is the methodology we follow in this
paper, except we will consider inference systems beyond deduction.

The first step is, therefore, to place machine learning in a logical framework.
This is a delicate, somewhat philosophical, undertaking which may be imperfect
or incomplete in its representation of the extremely broad spectrum of machine-
learning algorithms. However, this step must be made in order to enable the
methodological machinery to crank on. We will situate our logical understand-
ing of machine learning within C.S. Peirce’s view of deduction, induction, and
abduction as the key reasoning processes in the logic of science. This view, es-
poused in his celebrated paper Illustrations of the Logic of Science is perhaps
not the only way in which the logic of machine learning, seen as a computational
subsidiary to the logic of science, can be understood. In fact Peirce himself re-
vised both his position on the role of induction and abduction, and even the
terminology itself. But the clarity and elegance of his Illustrations, formal and
conceptual, makes it a compelling organising principle.



The second step is to suggest an informal realisability-style correspondence
between the logical and the computational, resulting in a programming language
for machine learning in which typical algorithms can be expressed concisely and
elegantly4. This is indeed a common situation when developing functional pro-
gramming paradigms. The methodological principles invoked above are incorpo-
rated into a calculus, which is then implemented as an extension of the OCaml

programming language.

Contributions: We give a methodological justification for abductive inference as
a logical framework for machine learning. Following an informal realisability ar-
gument for abduction we define a functional programming language for machine
learning, which we implement as a PPX extension of OCaml. The language
relies on a formal calculus of abduction which is studied elsewhere [4].

2 Deduction, induction, abduction

The division of all inference into Abduction, Deduction, and Induction

may almost be said to be the Key of Logic. C.S. Peirce

We faithfully follow Peirce’s logical analysis of scientific methodology as given
in his Illustrations of the Logic of Science. Several clarifications of terminology
first. The first one is that the term ‘logic’ must not be confused with ‘deductive
logic’. We are employing it in its broader sense, that of any system of formal
rules employed in carrying out scientific enquiry. Similarly, the term ‘induction’
must not be confused with ‘mathematical’ or other kinds of deductive induction,
but with the Humean principle of ‘generalising from examples ’ [5]. Finally, the
term ‘abduction’ is not used in loc. cit., but the original term ‘hypothesis’ was
subsequently replaced by the former, which became more popular.

Logical inference rules fall into two broad categories. Some rules, when cor-
rectly applied, result in conclusions which are at least as believable as the as-
sumptions. They are ‘apodeictic’, i.e. beyond debate. These are the ‘deductive’
rules, the application of general principles to specific cases. Systems of deductive
rules relate elegantly to functional programming via correspondences such as
Kleene’s proofs-as-programs (realisability) [6] or the propositions-as-types cor-
respondence introduced by Curry and Howard [7]. Computation carried out in
such deductive functional programming languages produces definitive results.
However, these ‘analytic’ rules, and the computation inspired by them, play no
role in the creation of new knowledge.

In contrast, machine learning is a style of computation characterised by the
opposite features. It is tentative, in that it produces possibly imprecise or in-
accurate results. Yet it is ‘ampliative’ (or ‘synthetic’) in that it generates new
knowledge. The tentative nature of the results is a necessary consequence of

4 The Curry-Howard correspondence emphasises types, whereas realisability empha-
sises proofs. Because we discuss new proof rules, rather than new types, we will
prefer the realisability approach.



knowledge generation, which involves heuristics such as generalisation or guess-
ing. The fallibility of machine learning may be unsettling, but it is an allowance
we must make for the sake of creativity. The same uncertainty also characterise
the synthetic logical rules of scientific discovery, induction and abduction. By for-
malising them we simply endow existing scientific practice with a computational
dimension.

Peirce’s presentation of logical concepts is syllogistic. Deduction is the appli-
cation of a Rule (‘All men are mortal.’) to a Case (‘Socrates is a man.’) in order
to produce a Result (‘Socrates is mortal.’). In contrast, (scientific) induction is
the synthesis of a Rule (‘If the ball is struck, it moves.’) out of a Case (‘The ball

was struck.’) and a Result (‘The ball moved.’). Formalised, this rule is deduc-

tively uninteresting,
A ∧B
A ⊃ B

. In scientific practice the rule is slightly different.

Induction either generalises from a number of samples
A ∧B · · · A ∧B

A ⊃ B

or reinforces an existing rule in light of new evidence
A ∧B A ⊃ B

A ⊃ B
. The

strength of the evidence can be modelled more precisely either by augmenting
the logic with modalities, or quantitatively, by (frequentist) statistical inference
or Bayesian belief revision. These lines of inquiry are investigated by a significant
literature [8].

Abduction is the third and final arrangement of Rule, Case and Result in
a distinct inference rule: given a Rule and a Result we infer the Case. The

formalisation is the (deductively unsound)
B A ⊃ B

A
. Peirce acknowl-

edged abduction as the rule leading to the most uncertain, the most speculative,
knowledge, but also as the rule with the potential to lead to the creation of the
most interesting new knowledge. In the practice of scientific discovery, abduction
is the process by which we try to answer the question ‘Why?’. This rule may
seem extravagantly unsound yet it plays a crucial role in Peirce’s philosophical
understanding of the logic of scientific discovery.5

More succinctly, the roles of induction and abduction can be explained as
follows. Induction is a way to mechanically create models of the world from data
about the world, whereas abduction is an examination of given models in order
to understand why they work.

5 Abduction is essential in making statements about reality when we only have ac-
cess to sense-data such as measurements. For example, the Result might be ‘The
thermometer reads 10◦’ with the Rule ‘If the temperature is 10◦ then the thermome-

ter reads 10◦’. From these we can abduce the Case, that ‘The temperature is 10◦’.
Note that this can never be apodeictic because, for example, the thermometer may
be broken. Denying abductive reasoning and demanding the certainty of deduction
leads to universal scepticism, e.g. Descartes’s ‘evil demon’ which may subvert our
experience of the world.



2.1 Proofs-as-programs for induction

The induction rule
A ∧B · · · A ∧B

A ⊃ B
has a natural computational inter-

pretation as the coercion of a list of pairs of type A×B into a function A → B,
realisable by a collection of constants interpA,B : (A × B) list → A → B. It is
reasonable to expect the function to be both conservative, agreeing with the
arguments when specified, and ampliative, supplying new and sensible values of
type B when an unknown argument of type A is provided. This is interpolation.

Interpolation can only be computed for certain data types. In the most
general case, if the type A is an order, i.e. it is equipped with a comparison
function, then the simplest and most general interpolation method is piecewise
constant interpolation. The resulting function f is constant on each interval
an ≤ a < an+1 with an, an+1 ∈ A consecutive known points, i.e. f(a) = bn for
an ≤ a < an+1. If A is an ordered field then the piecewise-constant interpolation
can be more sensible, with the segments centred in the known values, so that
for (an−1 + an)/2 ≤ a < (an + an+1)/2, f(a) = bn. If A is a multi-dimensional
vector field then the partition of space into regions based on distance to the given
points in which the function value is constant is the Voronoi tessellation [9].

If bothA andB are fields then a variety of interpolation methods are available
(trading off computational simplicity for precision) from linear interpolation,
which approximates the function as a set of line segments, to polynomial or
spline interpolations, which produce smooth functions. These methods also apply
when A is a vector field (‘multivariate interpolation’) and even if the premises
are countably many, i.e. the list of points is infinite (streams), via Whittaker-
Shannon interpolation [10].

The alternative presentation of the induction rule,
A ∧B A ⊃ B

A ⊃ B
is

more subtle because its computational interpretation suggests the need to ‘up-
date’ a function A → B to take into account a new pair of points A × B. If
we situate ourselves in the realm of approximation, we note that a function
f : A → B can be always converted into a list of points (A×B) list via sampling,
thus reducing this rule to the previous. Concretely this would involve a family
of constants sampA,B : (A → B) → (A× B) list. A realisability-style interpreta-
tion of this rule would be more subtle because when relating lists of points and
functions, interpolating then sampling at the same inputs produces the original
data points, but interpolating from a set of samples in general does not produce
the original function.

Finally, if we are in an approximate setting, then the computational interpre-
tation of induction can go beyond interpolation. Interpolation is always accurate
at the interpolation points, but functions can be synthesised in ways which re-
duce rather than avoid error at the sampling points, such as regression [11].
Regression is a more robust way of synthesising functions because it recognises
the possibility that the sample points may incorporate noise or errors. Interpola-
tion will over-fit the function to the points, a problem avoided by regression. In
the next section we will see that regression plays a key role in the interpretation
of abduction.



A basic ‘inductive’ core functional programming language for induction could,
in principle, be designed on the basis of an applied lambda calculus with lists
and special sampA,B and interpA,B constants.

2.2 Proofs-as-programs for abduction

Induction, computationally, may be interpreted as the synthesis of functions out
of data using techniques such as interpolation or regression. This is potentially
useful in the context of data science, but it is not quite machine learning. We will
see how abduction fills this role. The interpretation is rather different than in the

case of the induction, because in the abduction rule
B A ⊃ B

A
we will not

think of A and B as data, but rather we will think of A as parameters (P ) and
B as a rule (M ⊃ N). This ‘higher-order’ version of abduction is particularly

interesting for us:
M ⊃ N P ⊃ (M ⊃ N)

P
.

The computational interpretation is as follows. Given a parametrised function
f : P → (M → N) and a non-parametric function g : M → N we want to
find the values of parameter p : P which makes functions f p : M → N and
g : M → N be ‘as similar as possible’. One can think of g as an external
phenomenon, an experiment, or an oracle, and f as a model. By abduction we
need to find the best parameter values for the model so that the model instance
f p best explains g. The process of ‘abducing the best parameters’ of a generic
model is a general instance of a machine learning situation.

Concretely, a programming language would require a family of constants
abdP,A : A → (P → A) → P , where A is (usually) a function type. The in-
formal semantics of abdmf is the calculation of a parameter p : P so that a
defined measure of distance between f p and the reference external function m
is minimised. This is a generic optimisation problem which can be approached
in different ways depending on the types involved.

If P , the type of the parameters, is a discrete data type then combinato-
rial optimisation algorithms can be used to compute p. The literature on the
topic is substantial [12]. If P is a vector space then numerical approximations
such as gradient descent can be used. There is an even broader literature in
this area [13] going back to Cauchy’s pioneering work on numeric solutions to
systems of equations. Note that if the model P → A is a smooth (differentiable)
function and if the programming language has reflection [14] then gradient de-
scent can be made very efficient by computing the differential of the function
automatically [15], otherwise it can be computed numerically [16].

An abductive programming language, i.e. a simply-typed lambda calculus
extended with a family of abduction primitives (abdP,A), would offer the advan-
tage of highly simplifying machine-learning programming by hiding the search
or optimisation mechanisms from the programmer. For example, considering an
oracle with signature r : float → float, a linear-regression model lc of r would be
constructed as follows (in a generic functional syntax):

l (p1, p2)x = p1 × x+ p2



(p′1, p
′
2) = abdfloat×float,float→float r l

lc = l(p′1, p
′
2)

The resulting function lc is the concrete model, obtained from the abstract model
l instantiated with abduced parameters (p′1, p

′
2).

From the point of view of this computational interpretation we can see
how induction and abduction are subtly different. Both involve the synthesis
of new functions, but the mechanisms are distinct. Whereas induction synthe-
sises a function out of data using a fixed, built-in, transparent mechanism,
abduction provides the means of adjusting the parameters of a programmer-
supplied function to best-fit an oracle. Induction and abduction can interact
to create a reference model out of sampled data rather than using the exter-
nal process directly, which would be inconvenient. The combined induction-
abduction function, using a collection of data points d : (A× B) list is defined as
indabd d f = abdP,A→B (interpA,B d) f.

There is a similarity between this style of programming andTensorFlow [17],
a successful machine-learning library, with some differences. Our ‘abduction’
corresponds to ‘training’, but we impose no syntactic distinctions between a
function used as an argument to abduction or as applied to an argument. In
TensorFlow the programmer needs to explicitly create ‘sessions’ in which a
model (‘computation graph’) can be either trained or evaluated, separately. Such
distinctions are generally unpleasantly low-level.

3 Programming with induction-abduction

The considerations above highlight a programming idiom which from a realis-
ability perspective relates induction and abduction with certain useful program-
ming constructs. We are reassured by the resemblance of the inductive-abductive
style of programming with established frameworks such as TensorFlow. We
are proposing in fact an idealised version of such frameworks. The question we
ask is how can a conventional functional programming language be improved or
extended with inductive-abductive constructs.

Induction does not present a challenge. The interp family of constants are
simply extrinsic functions of the requisite signature. Abduction is also intro-
duced in the same way, but programming with it turns out to be inconvenient.
The real programming language design challenge is wrestling with the bureau-
cratic burden of parameter management. In this section we will describe at some
length our rationale for language design, with the actual language to follow. We
iterate through key problems and informally present partial solutions, in order to
highlight the challenge faced. The definitive solution, which addresses all these
problems will be presented in the next section.

The key requirement, which will drive most of the language design, is the
fact that abduction must rely on a fixed and generic optimisation algorithm. A
model P → A → B must accommodate a generic optimisation algorithm over
the space P of parameters and a norm for type B. For numeric optimisations



such as gradient descent, the space P of parameters is commonly a vector space.
The linear regression example becomes:

l : vec → float → float

l v x = v[0]× x+ v[1]

v′ = indabd r l

lc = l v′

Implicit parameters Parametrising models by vectors makes for ugly syntax.
Moreover, composite models must be constructed using operations which are
manually lifted to manage parameters. Consider a model for confidence bounds
which involves two linear functions (a simple weighted regression [18]):

bound v x = (l v [0 : 1 ] x , l v [2 : 3 ] x )

v′ = indabd r bound

boundc = bound v′

where v[m : n] means taking a slice of the vector v from m to n and r some suit-
able reference data. The model has four parameters, which must be distributed
to the two linear bounds. However, there is a problem with this approach. Ex-
plicit decomposition of the parameter vector worsens the syntactic overhead.
More seriously, mistakes in the slicing of the vector can lead to runtime errors
which, since they involve sizes, cannot be prevented by a simple type system.
Instead, we would prefer this:

bound x = (l x , l x )

v′ = indabd r bound

boundc = bound {v′}

The vector-parameter is an implicit parameter. When a concrete model is pro-
duced from the instantiation of the abstract model with the abducted parame-
ters, they are explicitly provided. However, managing the implicit parameter in
the lifted term formers is more complex than in languages which support such
feature syntactically [19].

In terms of implementation, it may seem possible to handle parameters in a
monadic style, but we shall see soon why this solution would not be satisfactory
when other, more subtle, requirements are taken into account.

Linear parameters Let us now turn to an issue that drives the ultimate design
of the language, illustrated by our running examples:

bound1 x = (λh.(h x , h x + 1 )) l

bound2 x = (l x , l x + 1 )



What is the dimension of the parameter vector for bound1 and bound2? In the
case of the former, it is quite obvious that the vector has two components. In
the latter, it depends on whether the programmer intended the two occurrences
of the function l to be abducted separately or together. We think there is a
case for the parameters to be abducted together, so that both functions have
two parameters, not only in an attempt to conform to a beta law which is often
expected by functional programmers, but also to allow the programmer to keep
control of how many parameters are independently adjustable during abduction.
In this example, abduction will always lead to boundaries delimited by two lines
1 unit apart, i.e. fixed confidence bounds of a linear regression. In contrast, the
weighted regression model can be defined with two separate parameter vectors
(each of size two), v0 = [1; 0] and v1 = [1; 0]:

bound x = (l {v0}x, l {v1}x)

In a final streamlining of the syntax, we omit parameter vectors altogether
and we only indicate by {−} that a constant is to be interpreted as a parameter,
leaving the vector of parameters everywhere implicit:

l x = {1} × x+ {0}

l′ x = {1} × x+ {0}

bound x = (l x, l′ x).

The linearity of parameter occurrences will be always observed, so that for ex-
ample terms (λx.x + x){0} and {0} + {0} are distinct, because they have one,
respectively two, parameters.

In general, the parameters of a model may be contributed by both arguments
and free variables, which means that parameters must be discovered not only in
the body of the function and its arguments, but also in closures. Linearity and
the need for ‘deep’ search of parameters indicates a simple syntactic solution to
be unlikely.

In conclusion, we want our running examples to be, ideally, written as:

l a b x = a× x+ b

g x = (l {1} {0})x

f x = (l {1} {0})x

f ′ x = (l {1} {0})x

bound w x = (f x, f ′ x)

bound l x = (g x, g x+ 1)

where bound w is the four-parameter weighted regression model, and bound l

the two-parameter unit confidence interval of a linear regression.



4 The abductive calculus

We have argued that the construction of a parametrised model, which is the
second input of the abduction abdP,A : A → (P → A) → P , can be tedious
or erroneous in the absence of implicit parameter management. We would like
parameters to be implicit in construction of a parametrised model, and to be
collected as a unique and opaque type for abduction.

The previous section illustrated the construction of models with implicit
parameters that are represented by specially annotated constants {k}. To enable
abductive programming we propose decoupling as a key feature. This consists of
a family of constants decVa,A : A →

(

(Va → A) × Va

)

where Va is an abstract
type indexed by a unique name a (or ‘atom’), as a mechanism to collect implicit
parameters and prepare an explicitly parametrised model.

Informally, decm computes a pair (l : Va → A, p : Va) by collecting all im-
plicit parameters inm : A as the vector p and turning the modelm (with implicit
parameters) into a parametrised model l : Va → A, a function on parameter-
vectors. The name a is shared by the parameter-vector p and the parametrised
model l, making type Va unique for the model. For our leading example, where
π1 is the first projection,

l x = {1} × x+ {0}

bound x = (l x, l x+ 1)

boundp = π1(dec bound)

p′ = indabd r boundp

boundc = boundp p
′

In this section we give an overview presentation of the abductive calculus, an
extension of the simply-typed lambda-calculus for abductive decoupling [4]. Let
A be a set of names (or atoms). Let (F,+,−,×, /) be a (fixed) field and Va an
A-indexed family of opaque vector types. The types T of the calculus are defined
by the grammar T ::= F | Va | T → T where a ∈ A.

Terms t are defined by the grammar t ::= x | λxT ′

.t | t t | k | t $ t |
{k} | Aa,T ′(f, x).t, where T and T ′ are types, f and x are variables, $ ∈ Σ
binary primitive operations, k ∈ F field elements, and a ∈ A names. The novel
syntactic elements of the calculus are provisional constants {k}, which serve as
implicit parameters in the above discussion, and a family of type- and name-
indexed abductive decoupling functions Aa,T ′(f, x).t. Decoupling functions are
the implicational form of the decoupling operation dec; they can be syntactically
related by (Aa,T ′(f, x).t)u ≡ (λ(f, x).t) (decVa,T ′ u) in the presence of tuples. We
opt for the implicational form to make the scope of names explicit, as we see in
the type system below.

Let A ⊂fin A be a finite set of names, Γ a sequence of typed variables xi:Ti,
and p a sequence of elements of the field F (i.e. a vector over F). We write A ⊢ Γ
if A is the support of Γ . The typing judgements are of shape: A | Γ | p ⊢ t : T ,
and typing derivation rules are given below.



A ⊢ Γ, T

A | Γ, x : T | − ⊢ x : T

A | Γ, x : T ′ | p ⊢ t : T

A | Γ | p ⊢ λxT ′

.t : T ′ → T

A | Γ | p ⊢ t : T ′ → T A | Γ | q ⊢ u : T ′

A | Γ | p, q ⊢ t u : T

A ⊢ Γ k ∈ F

A | Γ | − ⊢ k : F

A | Γ | p ⊢ t1 : T1 A | Γ | q ⊢ t2 : T2 $ : T1 → T2 → T ∈ Σ

A | Γ | p, q ⊢ t1 $ t2 : T

A ⊢ Γ

A | Γ | p ⊢ {p} : F

A, a | Γ, f : Va → T ′, x : Va | p ⊢ t : T A ⊢ Γ, T ′, T

A | Γ | p ⊢ Aa,T ′(f, x).t : T ′ → T

Note that the rules are linear with respect to the parameters p. In a derivable
judgement A | Γ | p ⊢ t : T , the vector p gives the collection of all provi-
sional constants from t. The decoupling function Aa,T ′(f, x).t binds name a, so
it requires in its typing a unique vector type Va collecting all the provisional
constants. The typing rule for the function limits the scope of the name a, so
that this vector type Va cannot be used outside of the scope of the function. As
a consequence the vector type Va is unique to the decoupling function. Variables
f and x bound by the function share the type Va but this type cannot be mixed
with parameters produced by other decouplings, as they may result in vectors
with different numbers of elements. This is discussed in Sec. 6.

Employing the straightforward extension by tuples (and lists) and the syn-
tactic sugar let x = u in t ≡ (λx.t)u, our leading example can be written in the
abductive calculus as below.

let l = λa.λb.λx.a× x+ b in

let f = l {1} {0} in

let bound = λx.(f x, f x+ 1) in

let update = A(boundp , ).boundp (indabd r boundp) in

update bound

Its operational semantics is specified using a variation on the Geometry of Inter-
action [20] which relies on graph rewriting [21]. Using this semantics the calculus
is proved as sound (well-typed programs terminate with a value).

The abstract machine represents a term as a graph along the edges of which
a token travels. The routing of the token is defined by language-specific rules, as
are the rewrite rules. The presence of the token indicates unambiguously what
rule must apply, defining in effect a particular reduction strategy.

The ‘dynamic rewriting’ style of the operational semantics has several ad-
vantages which we discuss below.

Sharing of provisional constants in the graph model is naturally represented
by making provisional-constant nodes with several incoming edges. In a term
model the same can only be achieved by introducing auxiliary names, a more
complicated formalism. Moreover, provisional constants cannot be copied or dis-
carded, but only shared at run-time, restrictions which are naturally reflected in
a graph model, unlike in a term model.



Decoupling is a complex, dynamic runtime operation which in the graph
model is surprisingly easy to formulate. Representing code and environment
jointly as a single graph removes the need for complex lookups in the formulation
of this rule. This is not as convenient in conventional abstract machines, because
code and environment are separate, hindering the formulation of rules involving
both, especially the collecting and sharing of provisional constants.

In the presence of provisional constants, a program can be interpreted in both
extensional and intensional ways. For example, an extensional interpretation of
{1} + {2} is a value 3, while its intensional interpretation is ‘a computation of
summation, given two provisional constants that are currently 2 and 3.’ The
graph-rewriting abstract machine has an ability to handle both interpretations
at the same time, by separating the flow of computation (the graph) and the
input-output behaviour (the token).

The same ‘two-in-one’ graph representation also enables a direct proof of
program equivalence by means of bisimulation, notably by dealing with the con-
gruence property in terms of sub-graphs.

5 DecML, a functional language for machine learning

Terms in the abductive calculus can be evaluated on-line in an experimental
graph-rewriting engine implementing the semantics directly.6 Additionally, we
want to implement a fragment of the abductive calculus as an extension of an
existing real-world functional programming language rather than as a totally
new language. The major challenge of implementing the abductive calculus is to
extract parameters, especially from closures. The semantic definition, which is
a global reference-chasing operation similar to garbage collection, is not easily
implementable. It seems to require a deep and undesirable intervention on the
runtime of the language. We will therefore pursue an alternative strategy, by
building a runtime structure for parameter management which is maintained
by instrumentation of the native code. This will make it possible to actually
maintain the model in a form in which decoupling is a trivial operation.

We implement the abductive calculus as a language extension to OCaml

along with the translation from it to standard OCaml under the PPX frame-
work [22, Sec. 7.23].7 In addition to OCaml terms tOCaml the abductive cal-
culus is extended with new terms t ::= tOCaml | [%pc k] | [%lift t] where, k are
(floating-point) constants. If t : A then [%model t] : (dict → A)∗dict. The bound-
ary between ‘pure’ OCaml and the abductive terms is indicated by [%model t],
with abductive code inside the marker.

The tag [%model t] ensures the code t is evaluated as a term of the abduc-
tive calculus, and presents the result to the ambient OCaml code as a model
with decoupled parameters. This will require a combination of syntactic trans-
formations and runtime instrumentations. [%pc k] defines a provisional constant,

6 http://bit.ly/abd-vis
7 https://github.com/DecML/decml-ppx



while lifting [%lift k] allows identifiers from outside of the abductive fragment,
including most OCaml operators, to be used as (trivial) models.

We define a translation ⌈−⌉ for terms t : A of the extended abductive cal-
culus, into terms t′

OCaml
of ‘lifted’ types (dict → A) ∗ dict of OCaml. The first

projection is the model, a function parameterised by a dictionary of parame-
ters, which is also given, as the second projection. The translation accumulates
the parameters from its sub-terms by merging their dictionaries, and it ‘lifts’
the syntactic constructs (abstraction, application, etc.) so that they match the
lifted types.

The dictionary is a simple data structure that associates each provisional
constant to a unique key. By using dictionaries instead of vectors, merging two
sets of parameters is easy since we no longer need to consider their order inside
the parametrised function. Below are the required dictionary operations in the
target language: empty denotes an empty dictionary, new key is an operation
that returns a new global key, create dict creates a single element dictionary
from a key and a float, lookup returns the value that is associated with a key in
a dictionary and merge combines two compatible dictionaries by joining them.

empty : dict new key : unit → key

new dict : key → float → dict lookup : key → dict → float

merge : dict → dict → dict

Variable x stands for any OCaml identifier, including constants, and k for a
float. The translation is indexed by a set V of variables bound in the model:

⌈x⌉V = (fst x, snd x) (if x 6∈ V )

⌈x⌉V = (λ .x, empty) (if x ∈ V )

⌈%lift t⌉V = (λ .t, empty) (where t is a pure OCaml term)

⌈%pc k⌉V = (λq.lookup L q,new dict Lk) (where L = new key ())

⌈(t1, t2)⌉V = (λq.((F1 q), (F2 q)),merge P1 P2) (where (Fi, Pi) = ⌈ti⌉V )

⌈t1 t2⌉V = (λq.((F1 q) (F2 q)),merge P1 P2) (where (Fi, Pi) = ⌈ti⌉V )

⌈λx.t⌉V = (λq.λx.F q, P ) (where (F, P ) = ⌈t⌉V ∪{x})

In the defintion of %lift, by a ‘pure’ OCaml term we mean a term with no
abductive syntax or types. In concrete DecML syntax, the leading example is:

let (∗), (+), j, z, i = [%lift (∗.)], [%lift (+.)], [%pc 1.0], [%pc 0.0], [%lift 1.0] in

let l = [%model funx → j ∗ x+ z] in

let (bp, p) = [%model funx → (l x), (l x+ i)] in

let p′ = indabd r bp in

let bc = bp p′ in . . .

Induction-abduction indabd is not implemented as a constant, but it can be any
function of the right type, implementing a generic optimisation algorithm such as



gradient descent. Parameter p can be supplied to this function as an argument,
if necessary, to seed the optimisation algorithm with an initial point.

This final observation also explains our decision to use the %model annota-
tion to lift only parts of an OCaml program rather than the whole program.
Inside the abductive fragment all operations are lifted to manage parameters,
which makes them less efficient and interferes with compiler optimisation. But
once a model is created in the decoupled form then it can be processed in the
more efficient ambient language. It is particularly important that abduction,
which dominates computationally any machine learning program, can be exe-
cuted natively and efficiently. The mixing of pure and instrumented code, on
the other hand, can lead to subtle typing problems which could be difficult for
the programmer to understand and fix. The limited access PPX has to typing
information makes it a challenge to give further assistance on this matter, so a
future version of this language may require substantial re-engineering.

6 Related and further work

Our work has been heavily influenced by TensorFlow [17]. We are aiming to
provide an idealised, functional version of this framework. DecML, by using the
decoupling mechanism, avoids the need to represent parameters using imperative
state, while recognising their importance (‘variables’ in TensorFlow terminol-
ogy) as a distinct language entity. We also recognise the dual-use of models, in
direct and training mode, but we prefer to not make this semantic distinction
syntactic. As a shallow embedding of a DSL into Python, TensorFlow must
sometimes use rather heavy-going constructs such as that of a ‘session’, which
we can afford to completely elide. Moreover, by presenting a language exten-
sion rather than an embedded DSL we avoid a host of well-known problems and
pitfalls [23–25].

For reasons of space and presentational focus we have also glossed over
another significant distinction between inductive-abductive programming and
TensorFlow. In the former, abduction is given as a fixed, language-specific,
construct whereas in the latter the abduction (search and optimisation) algo-
rithm is programmable. Of course, fixing the abduction algorithm and assuming
that certain types come with fixed norms is impractical. Prolog is an example
of an abductive programming language in which abduction is implemented as
a fixed resolution algorithm, which significantly narrows the applicability of the
language to practical problems.

However, if the programming language we are extending is rich enough (such
as OCaml), then the induction-abduction extrinsics can be simply programmed
as normal library functions. The same applies to programming the norm func-
tions explicitly. In fact a fixed abduction construct is not actually defined in the
abductive calculus [4], nor is it in DecML! We will briefly discuss some further
language design considerations for programmable abduction, which are already
included in the abductive calculus but not yet implemented in DecML.



The key requirement is that parameters are collected as an opaque vector

type, the key data type required by the formalisation of generic numeric optimi-
sation problems. Since parameter collection and slicing mechanisms are complex,
the dimension of abducted parameter vectors and even the order of coordinates
are impossible to anticipate at compile-time. Abstracting away these details is
therefore required, and any vector needs to be uniquely associated with the model
which it parametrises. Making abduction programmable also explains why we
prefer to extract, rather than discard, the current values of the parameters. They
are often used by programmers to seed the search and optimisation algorithms,
using domain-specific knowledge.

In order to prevent erroneous uses, unique and opaque vector types must be
generated for each model so that vectors produced by abduction can only be
used with the original model. The opaqueness prevents access to the represen-
tation, i.e. to the bases or the individual coordinates. Only operators which are
symmetric under permutations of bases will be allowed. Mathematically, they
correspond to symmetric tensors, but formulated in a programmer-friendly way.
This is a real, but not onerous, restriction on the way the generic optimisation
algorithms are used. Indeed, if generic optimisation algorithms are to be used
at all it is difficult to imagine how (or why) we may want to program them so
that different axes are treated differently in the search space. As an extra bonus,
linear vector operations are efficiently programmable and easily parallelisable on
specialised architectures such as GPUs.

Our proposal focusses on the correspondence between inductive-abductive
inference rules and programming constructs in order to extract methodological
principles for the design of a machine-learning-oriented programming language.
However, these correspondences are only pursued informally. A rigorous realiz-
ability definition for induction and abduction is likely to be an interesting and
instructive mathematical exercise. We plan to pursue it in the future.

Besides realisability, Curry-Howard-style correspondences can also be pur-
sued by refining the type system to distinguish between the various modalities
arising out of inductive and abductive reasoning. The distinction between def-
inite and tentative (or approximate) values can be handled by epistemic logics
which distinguish between ‘known’ and ‘believed’ statements. This can lead to
types for inductive-abductive programming which can track the epistemic status
of results of computations. More subtly, the analytic vs. synthetic distinction can
also be modelled by type systems [26] which can prove useful in the context of
machine learning. This remains a longer-term project.
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