292 research outputs found

    Higgs Multiplets in Heterotic GUT Models

    Full text link
    For supersymmetric GUT models from heterotic string theory, built from a stable holomorphic SU(n) vector bundle VV on a Calabi-Yau threefold XX, the net amount of chiral matter can be computed by a Chern class computation. Corresponding computations for the number NHN_H of Higgses lead for the phenomenologically relevant cases of GUT group SU(5) or SO(10) to consideration of the bundle \La^2 V. In a class of bundles where everything can be computed explicitly (spectral bundles on elliptic XX) we find that the computation for NHN_H gives a result which is in conflict with expectations. We argue that this discrepancy has its origin in the subtle geometry of the spectral data for \La^2 V and that taking this subtlety into account properly should resolve the problem.Comment: 29 pages; comments and references adde

    Moduli restriction and Chiral Matter in Heterotic String Compactifications

    Full text link
    Supersymmetric heterotic string models, built from a stable holomorphic vector bundle VV on a Calabi-Yau threefold XX, usually come with many vector bundle moduli whose stabilisation is a difficult and complex task. It is therefore of interest to look for bundle constructions which, from the outset, have as few as possible bundle moduli. One way to reach such a set-up is to start from a generic construction and to make discrete modifications of it which are available only over a subset of the bundle moduli space. Turning on such discrete 'twists' constrains the moduli to the corresponding subset of their moduli space: the twisted bundle has less parametric freedom. We give an example of a set-up where this idea can be considered concretely. Such non-generic twists lead also to new contributions of chiral matter (which greatly enhances the flexibility in model building); their computation constitutes the main issue of this note.Comment: 37 pages; comments and references adde

    Secondary structure in the core of amyloid fibrils formed from human βm and its truncated variant Δn6

    Get PDF
    Amyloid fibrils formed from initially soluble proteins with diverse sequences are associated with an array of human diseases. In the human disorder, dialysis-related amyloidosis (DRA), fibrils contain two major constituents, full-length human β-microglobulin (hβm) and a truncation variant, ΔN6 which lacks the N-terminal six amino acids. These fibrils are assembled from initially natively folded proteins with an all antiparallel β-stranded structure. Here, backbone conformations of wild-type hβm and ΔN6 in their amyloid forms have been determined using a combination of dilute isotopic labeling strategies and multidimensional magic angle spinning (MAS) NMR techniques at high magnetic fields, providing valuable structural information at the atomic-level about the fibril architecture. The secondary structures of both fibril types, determined by the assignment of ∼80% of the backbone resonances of these 100- and 94-residue proteins, respectively, reveal substantial backbone rearrangement compared with the location of β-strands in their native immunoglobulin folds. The identification of seven β-strands in hβm fibrils indicates that approximately 70 residues are in a β-strand conformation in the fibril core. By contrast, nine β-strands comprise the fibrils formed from ΔN6, indicating a more extensive core. The precise location and length of β-strands in the two fibril forms also differ. The results indicate fibrils of ΔN6 and hβm have an extensive core architecture involving the majority of residues in the polypeptide sequence. The common elements of the backbone structure of the two proteins likely facilitates their ability to copolymerize during amyloid fibril assembly

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.

    Get PDF
    To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo

    Hypofractionated radiotherapy has the potential for second cancer reduction

    Get PDF
    <p>Abstract</p> <p>Background and Purpose</p> <p>A model for carcinoma and sarcoma induction was used to study the dependence of carcinogenesis after radiotherapy on fractionation.</p> <p>Materials and methods</p> <p>A cancer induction model for radiotherapy doses including fractionation was used to model carcinoma and sarcoma induction after a radiation treatment. For different fractionation schemes the dose response relationships were obtained. Tumor induction was studied as a function of dose per fraction.</p> <p>Results</p> <p>If it is assumed that the tumor is treated up to the same biologically equivalent dose it was found that large dose fractions could decrease second cancer induction. The risk decreases approximately linear with increasing fraction size and is more pronounced for sarcoma induction. Carcinoma induction decreases by around 10% per 1 Gy increase in fraction dose. Sarcoma risk is decreased by about 15% per 1 Gy increase in fractionation. It is also found that tissue which is irradiated using large dose fractions to dose levels lower than 10% of the target dose potentially develop less sarcomas when compared to tissues irradiated to all dose levels. This is not observed for carcinoma induction.</p> <p>Conclusions</p> <p>It was found that carcinoma as well as sarcoma risk decreases with increasing fractionation dose. The reduction of sarcoma risk is even more pronounced than carcinoma risk. Hypofractionation is potentially beneficial with regard to second cancer induction.</p

    Supersymmetric Hidden Sectors for Heterotic Standard Models

    Get PDF
    Within the context of the weakly coupled E 8 × E 8 heterotic string, we study the hidden sector of heterotic standard model compactifications to four-dimensions. Specifically, we present a class of hidden sector vector bundles — composed of the direct sum of line bundles only — that, together with an effective bulk five-brane, renders the heterotic standard model entirely N = 1 supersymmetric. Two explicit hidden sectors are constructed and analyzed in this context; one with the gauge group E 7 × U(1) arising from a single line bundle and a second with an SO(12) × U(1) × U(1) gauge group constructed from the direct sum of two line bundles. Each hidden sector bundle is shown to satisfy all requisite physical constraints within a finite region of the Kähler cone. We also clarify that the first Chern class of the line bundles need not be even in our context, as has often been imposed in the model building literature

    Structure in 6D and 4D N=1 supergravity theories from F-theory

    Get PDF
    We explore some aspects of 4D supergravity theories and F-theory vacua that are parallel to structures in the space of 6D theories. The spectrum and topological terms in 4D supergravity theories correspond to topological data of F-theory geometry, just as in six dimensions. In particular, topological axion-curvature squared couplings appear in 4D theories; these couplings are characterized by vectors in the dual to the lattice of axion shift symmetries associated with string charges. These terms are analogous to the Green-Schwarz terms of 6D supergravity theories, though in 4D the terms are not generally linked with anomalies. We outline the correspondence between F-theory topology and data of the corresponding 4D supergravity theories. The correspondence of geometry with structure in the low-energy action illuminates topological aspects of heterotic-F-theory duality in 4D as well as in 6D. The existence of an F-theory realization also places geometrical constraints on the 4D supergravity theory in the large-volume limit.Comment: 63 page

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    corecore