12 research outputs found

    Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: New therapeutic targets

    No full text
    BACKGROUND & AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple biliary cysts. Recently, novel PLD-causative genes, encoding for endoplasmic reticulum (ER)-resident proteins involved in protein biogenesis and transport, were identified. We hypothesized that aberrant proteostasis contributes to PLD pathogenesis, representing a potential therapeutic target. METHODS: ER stress was analysed at transcriptional (qPCR), proteomic (mass spectrometry), morphological (transmission electron microscopy, TEM) and functional (proteasome activity) levels in different PLD models. The effect of ER stress inhibitors [4-phenylbutyric acid (4-PBA)] and/or activators [tunicamycin (TM)] was tested in polycystic (PCK) rats and cystic cholangiocytes in vitro. RESULTS: The expression levels of unfolded protein response (UPR) components were upregulated in liver tissue from PLD patients and PCK rats, as well as in primary cultures of human and rat cystic cholangiocytes, compared to normal controls. Cystic cholangiocytes showed altered proteomic profiles, mainly related to proteostasis (ie synthesis, folding, trafficking and degradation of proteins), marked enlargement of the ER lumen (by TEM) and hyperactivation of the proteasome. Notably, chronic treatment of PCK rats with 4-PBA decreased liver weight, as well as both liver and cystic volumes, of animals under baseline conditions or after TM administration compared to controls. In vitro, 4-PBA downregulated the expression (mRNA) of UPR effectors, normalized proteomic profiles related to protein synthesis, folding, trafficking and degradation and reduced the proteasome hyperactivity in cystic cholangiocytes, reducing their hyperproliferation and apoptosis. CONCLUSIONS: Restoration of proteostasis in cystic cholangiocytes with 4-PBA halts hepatic cystogenesis, emerging as a novel therapeutic strategy

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    A Novel Serum Metabolomic Profile for the Differential Diagnosis of Distal Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma

    Get PDF
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required.This study was supported by the Centro Internacional sobre el Envejecimiento, Spain (OLD-HEPAMARKER, 0348_CIE_6_E) co-financed with European Union ERDF funds; Carlos III Institute of Health, Spain (PI16/00598, PI16/01126, PI18/01075, PI19/00819) and Miguel Servet Program (CON14/00129) co-financed by European Regional Development Fund; Asociación Española Contra el Cancer, Spain (AECC-Cánceres raros 2017/2020); H2020 ESCALON project: H2020-SC1-BHC-2018-2020; Fundacion La Caixa (Hepacare Project); MCIU/AEI/FEDER, EU (SAF2017-87301-R); Severo Ochoa Excellence Accreditation (SEV-2016-0644). A. Sanchez-Martin and A. Lapitz were supported by pre-doctoral scholarships funded by the Ministry of Science, Innovation and Universities (FPU17/04027) and the Basque Government (PRE_2017_1_0345), respectively, and M.L. Gutiérrez is supported by the "Stop fuga de Cerebros" grant from ROCHE FARMA SA. This work was carried out in the framework of Working Group 5 of the COST Action CA18122, European Cholangiocarcinoma Network, EURO-CHOLANGIO-NET

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma

    No full text
    Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with poor prognosis. Several conditions, such as primary sclerosing cholangitis (PSC), are risk factors. Noninvasive differential diagnosis between intrahepatic CCA and hepatocellular carcinoma (HCC) is sometimes difficult. Accurate noninvasive biomarkers for PSC, CCA, and HCC are not available. In the search for novel biomarkers, serum extracellular vesicles (EV) were isolated from CCA (n 5 43), PSC (n 5 30), or HCC (n 5 29) patients and healthy individuals (control, n 5 32); and their protein content was characterized. By using nanoparticle tracking analysis, serum EV concentration was found to be higher in HCC than in all the other groups. Round morphology (by transmission electron microscopy), size (180 nm diameter by nanoparticle tracking analysis), and markers (clusters of differentiation 9, 63, and 81 by immunoblot) indicated that most serum EV were exosomes. Proteome profiles (by mass spectrometry) revealed multiple differentially expressed proteins among groups. Several of these proteins showed high diagnostic values with maximum area under the receiver operating characteristic curve of 0.878 for CCA versus control, 0.905 for CCA stage I-II versus control, 0.789 for PSC versus control, 0.806 for noncirhottic PSC versus control, 0.796 for CCA versus PSC, 0.956 for CCA stage I-II versus PSC, 0.904 for HCC versus control, and 0.894 for intrahepatic CCA versus HCC. Proteomic analysis of EV derived from CCA human cells in vitro revealed higher abundance of oncogenic proteins compared to EV released by normal human cholangiocytes. Orthotopic implant of CCA human cells in the liver of immunodeficient mice resulted in the release to serum of EV containing some similar human oncogenic proteins. Conclusion: Proteomic signatures found in serum EV of CCA, PSC, and HCC patients show potential usefulness as diagnostic tools

    Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma and primary sclerosing cholangitis

    No full text
    Early and differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) by noninvasive methods represents a current clinical challenge. The analysis of low-molecular-weight metabolites by new high-throughput techniques is a strategy for identifying biomarkers. Here, we have investigated whether serum metabolome can provide useful biomarkers in the diagnosis of iCCA and HCC and could discriminate iCCA from HCC. Because primary sclerosing cholangitis (PSC) is a risk factor for CCA, serum metabolic profiles of PSC and CCA have also been compared. The analysis of the levels of lipids and amino acids in the serum of patients with iCCA, HCC, and PSC and healthy individuals (n = 20/group) showed differential profiles. Several metabolites presented high diagnostic value for iCCA versus control, HCC versus control, and PSC versus control, with areas under the receiver operating characteristic curve (AUC) greater than those found in serum for the nonspecific tumor markers carbohydrate antigen 19-9 (CA 19-9) and alpha-fetoprotein (AFP), commonly used to help in the diagnosis of iCCA and HCC, respectively. The development of an algorithm combining glycine, aspartic acid, SM(42:3), and SM(43:2) permitted to accurately differentiate in the diagnosis of both types of tumors (biopsy-proven). The proposed model yielded 0.890 AUC, 75% sensitivity, and 90% specificity. Another algorithm by combination of PC(34:3) and histidine accurately permitted to differentiate PSC from iCCA, with an AUC of 0.990, 100% sensitivity, and 70% specificity. These results were validated in independent cohorts of 14-15 patients per group and compared with profiles found in patients with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Conclusion: Specific changes in serum concentrations of certain metabolites are useful to differentiate iCCA from HCC or PSC, and could help in the early diagnosis of these diseases
    corecore