46 research outputs found

    Cosmological CMBR dipole in open universes ?

    Get PDF
    The observed CMBR dipole is generally interpreted as a Doppler effect arising from the motion of the Earth relative to the CMBR frame. An alternative interpretation, proposed in the last years, is that the dipole results from ultra-large scale isocurvature perturbations. We examine this idea in the context of open cosmologies and show that the isocurvature interpretation is not valid in an open universe, unless it is extremely close to a flat universe, ∣Ω0−1∣<10−4|\Omega_0 -1|< 10^{-4}.Comment: 26 pages, Latex, 6 figures, to appear in Phys. Rev.

    Spatial gradients in the cosmological constant

    Get PDF
    It is possible that there may be differences in the fundamental physical parameters from one side of the observed universe to the other. I show that the cosmological constant is likely to be the most sensitive of the physical parameters to possible spatial variation, because a small variation in any of the other parameters produces a huge variation of the cosmological constant. It therefore provides a very powerful {\em indirect} evidence against spatial gradients or temporal variation in the other fundamental physical parameters, at least 40 orders of magnitude more powerful than direct experimental constraints. Moreover, a gradient may potentially appear in theories where the variability of the cosmological constant is connected to an anthropic selection mechanism, invoked to explain the smallness of this parameter. In the Hubble damping mechanism for anthropic selection, I calculate the possible gradient. While this mechanism demonstrates the existence of this effect, it is too small to be seen experimentally, except possibly if inflation happens around the Planck scale.Comment: 12 page

    A note on second-order perturbations of non-canonical scalar fields

    Get PDF
    We study second-order perturbations for a general non-canonical scalar field, minimally coupled to gravity, on the unperturbed FRW background, where metric fluctuations are neglected a priori. By employing different approaches to cosmological perturbation theory, we show that, even in this simplified set-up, the second-order perturbations to the stress tensor, the energy density and the pressure display potential instabilities, which are not present at linear order. The conditions on the Lagrangian under which these instabilities take place are provided. We also discuss briefly the significance of our analysis in light of the possible linearization instability of these fields about the FRW background.Comment: 8 page, Revtex 4. Clarifications added, results unchanged; [v3] 10 pages, matches with the published version, Discussion for specific cases expanded and preliminary results including the metric perturbations discusse

    Restoring the sting to metric preheating

    Get PDF
    The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the vacua of the non-inflaton fields during inflation are deformed away from the origin, or (2) the effective masses of non-inflaton fields during inflation are small but during preheating are large. Unlike the simple toy model of a g2ϕ2χ2g^2 \phi^2 \chi^2 coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally.Comment: 6 pages, 3 ps figures, RevTex, revised discussion of backreaction and new figure. To appear Phys. Rev. D (Rapid Communication

    Has the Universe always expanded ?

    Get PDF
    We consider a cosmological setting for which the currently expanding era is preceded by a contracting phase, that is, we assume the Universe experienced at least one bounce. We show that scalar hydrodynamic perturbations lead to a singular behavior of the Bardeen potential and/or its derivatives (i.e. the curvature) for whatever Universe model for which the last bounce epoch can be smoothly and causally joined to the radiation dominated era. Such a Universe would be filled with non-linear perturbations long before nucleosynthesis, and would thus be incompatible with observations. We therefore conclude that no observable bounce could possibly have taken place in the early universe if Einstein gravity together with hydrodynamical fluids is to describe its evolution, and hence, under these conditions, that the Universe has always expanded.Comment: 11 pages, LaTeX-ReVTeX, no figures, submitted to PR

    Observational constraints on the curvaton model of inflation

    Get PDF
    Simple curvaton models can generate a mixture of of correlated primordial adiabatic and isocurvature perturbations. The baryon and cold dark matter isocurvature modes differ only by an observationally null mode in which the two perturbations almost exactly compensate, and therefore have proportional effects at linear order. We discuss the CMB anisotropy in general mixed models, and give a simple approximate analytic result for the large scale CMB anisotropy. Working numerically we use the latest WMAP observations and a variety of other data to constrain the curvaton model. We find that models with an isocurvature contribution are not favored relative to simple purely adiabatic models. However a significant primordial totally correlated baryon isocurvature perturbation is not ruled out. Certain classes of curvaton model are thereby ruled out, other classes predict enough non-Gaussianity to be detectable by the Planck satellite. In the appendices we review the relevant equations in the covariant formulation and give series solutions for the radiation dominated era.Comment: Minor changes and corrections to match version accepted by PR

    Observational Constraints on Dark Radiation in Brane Cosmology

    Get PDF
    We analyze the observational constraints on brane-world cosmology whereby the universe is described as a three-brane embedded in a five-dimensional anti-de Sitter space. In this brane-universe cosmology, the Friedmann equation is modified by the appearance of extra terms which derive from existence of the extra dimensions. In the present work we concentrate on the ``dark radiation'' term which diminishes with cosmic scale factor as a−4a^{-4}. We show that, although the observational constraints from primordial abundances allow only a small contribution when this term is positive, a much wider range of negative values is allowed. Furthermore, such a negative contribution can reconcile the tension between the observed primordial \he4 and D abundances. We also discuss the possible constraints on this term from the power spectrum of CMB anisotropies in the limit of negligible cosmological perturbation on the brane world. We show that BBN limits the possible contribution from dark radiation just before the nucleosynthesis epoch to lie between -65% and +5+5% of the background photon energy density. Combining this with the CMB constraint reduces this range to between -24% and +3.5+3.5% at the 2σ2\sigma confidence level.Comment: 6 pages, 3 figures, submitted to PRD; this version includes the referee's suggestions, updated references, and an improved treatment of BBN model uncertaintie

    Factors influencing the initial establishment of salt marsh vegetation on engineered sea wall terraces in south east England

    Get PDF
    Sea walls provide vital flood protection for lowland coastal property. We investigated the integrity of a cost-effective method of repairing sea defences, which has potential to create habitat for coastal and salt marsh flora. Experimental stone-gabion and clay-filled terraces were installed as a soft engineered approach to repair damaged sea walls in estuarine embayments in south east England. Changes in the surface heights of sediment and vascular plant colonisation were monitored over a 22 month period. Seven of the 12 terraces were colonised, by 12 species of plant, reaching a maximum of 85% cover. The main drivers of plant colonisation were sediment stability, elevation, exposure and sediment shear strength. Terraces with least change in the surface height of sediments were favourable for plant colonisation. Ordination (Canonical Correspondence Analysis) showed 72% variation in plant distribution explained by elevation (37%), exposure (30%), terrace length and sediment shear strength (5%). Elevation was the most influential variable; recruitment increased as terrace height approached the height of existing marsh (r2 = 0.43). This cost-effective approach has the potential to provide protection to sea walls and create additional habitat for wildlife. Key considerations for the improvement of terrace design and construction are discussed

    Brane World Dynamics and Conformal Bulk Fields

    Get PDF
    In the Randall-Sundrum scenario we investigate the dynamics of a spherically symmetric 3-brane world when matter fields are present in the bulk. To analyze the 5-dimensional Einstein equations we employ a global conformal transformation whose factor characterizes the Z2Z_2 symmetric warp. We find a new set of exact dynamical collapse solutions which localize gravity in the vicinity of the brane for a stress-energy tensor of conformal weight -4 and a warp factor that depends only on the coordinate of the fifth dimension. Geometries which describe the dynamics of inhomogeneous dust and generalized dark radiation on the brane are shown to belong to this set. The conditions for singular or globally regular behavior and the static marginally bound limits are discussed for these examples. Also explicitly demonstrated is complete consistency with the effective point of view of a 4-dimensional observer who is confined to the brane and makes the same assumptions about the bulk degrees of freedom.Comment: 26 pages, latex, no figures. Minor revisions. Some references added. Revised version to appear in Phys. Rev.

    Large-scale curvature and entropy perturbations for multiple interacting fluids

    Get PDF
    We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adiabatic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations obeying a generalised adiabatic condition remain adiabatic in the large-scale limit, even when one includes energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton decays.Comment: 14 pages, latex with revtex, 5 figures; v2 typos corrected; v3 typos corrected, version to appear in Phys. Rev.
    corecore