1,417 research outputs found

    The DRIFT Dark Matter Experiments

    Full text link
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    The effect of Co and Zn addition on densification and electrical properties of ceria-based nanopowders

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORIn this work, cobalt and zinc-doped Ce0.8Gd0.2O1.9 samples were prepared starting from a commercial nanopowder and compared to the undoped material. The powder samples were pressed and afterwards sintered by a two-step procedure, before characterization by X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Impedance Spectroscopy (IS) in air. Cobalt or zinc additions are effective as sintering aid, allowing peak sintering temperatures around 1000 degrees C to reach densifications above of 93% of theoretical density, showing no evidence for the presence of secondary phases. The total conductivity at 800 degrees C of pressed Zn-doped samples (6.7x10(-2) S/cm) and Co-doped samples (7.5x10(-2) S/cm) is similar for undoped samples (7.2x10(-2) S/cm) showing that Zn and Co has a positive effect on densification without compromising the electrical conductivity.In this work, cobalt and zinc-doped Ce0.8Gd0.2O1.9 samples were prepared starting from a commercial nanopowder and compared to the undoped material. The powder samples were pressed and afterwards sintered by a two-step procedure, before characterization by X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Impedance Spectroscopy (IS) in air. Cobalt or zinc additions are effective as sintering aid, allowing peak sintering temperatures around 1000 degrees C to reach densifications above of 93% of theoretical density, showing no evidence for the presence of secondary phases. The total conductivity at 800 degrees C of pressed Zn-doped samples (6.7x10(-2) S/cm) and Co-doped samples (7.5x10(-2) S/cm) is similar for undoped samples (7.2x10(-2) S/cm) showing that Zn and Co has a positive effect on densification without compromising the electrical conductivity.19510571063CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORSem informaçãoSem informaçãoFinancial supports from CAPES and CNPq are greatly appreciated. We would like to thank Rita C. G. Vinhas (State University of Campinas, Campinas Campus, Brazil), for helping with the XPS measurements

    Promoting men’s awareness, self-examination, and help-seeking for testicular disorders: a systematic review of interventions

    Get PDF
    Background: Testicular cancer (TC) is commonly diagnosed among men aged 15-40 years. The incidence of TC is on the rise. Benign testicular disorders such as testicular torsion and epididymitis can lead to testicular ischemia, sepsis, and infertility if left untreated. This systematic review aims to evaluate the effectiveness of studies promoting men’s knowledge and awareness of testicular disorders and/or self-examination, behaviours and/or intentions to examine their testes, and help-seeking behaviours and/or intentions for testicular symptoms. / Methods: Academic Search Complete, Medline, CINAHL, PsychINFO, ERIC, the Cochrane Library, the World Health Organisation International Clinical Trials Registry Platform, Clinicaltrials.gov, Grey Literature Report, and Open Grey were searched for studies published between November 2014 and April 2018. The methodological quality and level of evidence per outcome were assessed. / Results: There were five papers included: two were experimental studies, two were systematic reviews, and one was an integrative review. The majority of the reviewed interventions were successful in increasing men’s awareness of TC and self-examination. Examples include a television show featuring a celebrity with TC, a university campaign, and interactive educational sessions. The impact of the reviewed interventions on health beliefs (i.e. perceived susceptibility, severity, benefits, barriers, and self-efficacy) varied across the reviewed literature. Studies promoting help-seeking for testicular symptoms and awareness of benign testicular disorders were lacking. / Conclusions: This review highlights the importance of evaluating educational interventions aimed at younger men, whilst raising their awareness of testicular disorders and increasing their help-seeking intentions for testicular symptoms. Given the lack of consensus around scheduled testicular self-examination among younger men, clinicians are encouraged to instruct men to familiarise themselves with the look and feel of their own testes and to seek timely medical attention for abnormalities. / Registration: The review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) under the registration number CRD42018093671

    Analysis of Geometric Accuracy and Thickness Reduction in Multistage Incremental Sheet Forming using Digital Image Correlation

    Get PDF
    Incremental Sheet Forming (ISF) is a freeform manufacturing method whereby a 3D geometry is created by progressively deforming a metal sheet with a single point tool following a defined trajectory. The thickness distribution of a formed part is a major consideration of the process and is believed to be improved by forming the geometry in multiple stages. This paper describes a series of experiments in which truncated cone geometries were formed using two multistage methods and compared to the same geometry formed using the traditional single stage method. The geometric accuracy and thickness distributions, including 3D thickness distribution plots, of each are examined using digital image correlation (DIC). The data collected indicate that multistage forming, compared to single stage forming, has a significant effect on the geometric accuracy of the processed sheets. Moreover, the results of the experiments conducted in this paper show that sheets processed with multistage forming do not have a uniform sheet thickness reduction, rather they have a parabolic-like thickness distribution in the processed region

    Iterative Learning Control of Single Point Incremental Sheet Forming Process using Digital Image Correlation

    Get PDF
    Single Point Incremental Sheet Forming (SPIF) is a versatile forming process that has gained significant traction over the past few decades. Its increased formability, quick part adaption, and reduced set-up costs make it an economical choice for small batch and rapid prototype forming applications when compared to traditional stamping processes. However, a common problem with the SPIF process is its tendency to produce high geometric error due to the lack of supporting dies and molds. While geometric error has been a primary focus of recent research, it is still significantly larger for SPIF than traditional forming processes. In this paper, the convergence behavior and the ability to reduce geometric error using a simple Iterative Learning Control (ILC) algorithm is studied with two different forming methods. For both methods a tool path for the desired reference geometry is generated and a part is formed. A Digital Image Correlation (DIC) system takes a measurement and the geometric error along the tool path is calculated. The ILC algorithm then uses the geometric error to alter the tool path for the next forming iteration. The first method, the Single Sheet Forming (SSF) method, performs each iteration on the same sheet. The second method, the Multi Sheet Forming (MSF) method, performs each iteration on a newly replaced sheet. Multiple experiments proved the capability of each method at reducing geometric error. It was concluded that using the MSF method allows for negative corrections to the forming part and, therefore, leads to better final part accuracy. However, this method is less cost effective and more time consuming than using the standard SSF methodology. In addition, it was found that in order to effectively correct a part with an ILC algorithm, steps must be taken to increase the controllability of the part geometry
    corecore