4,243 research outputs found
A prototype large-angle photon veto detector for the P326 experiment at CERN
The P326 experiment at the CERN SPS has been proposed with the purpose of
measuring the branching ratio for the decay K^+ \to \pi^+ \nu \bar{\nu} to
within 10%. The photon veto system must provide a rejection factor of 10^8 for
\pi^0 decays. We have explored two designs for the large-angle veto detectors,
one based on scintillating tiles and the other using scintillating fibers. We
have constructed a prototype module based on the fiber solution and evaluated
its performance using low-energy electron beams from the Frascati Beam-Test
Facility. For comparison, we have also tested a tile prototype constructed for
the CKM experiment, as well as lead-glass modules from the OPAL electromagnetic
barrel calorimeter. We present results on the linearity, energy resolution, and
time resolution obtained with the fiber prototype, and compare the detection
efficiency for electrons obtained with all three instruments.Comment: 8 pages, 9 figures, 2 tables. Presented at the 2007 IEEE Nuclear
Science Symposium, Honolulu HI, USA, 28 October - 3 November 200
Characterizing and prognosticating chronic lymphocytic leukemia in the elderly: prospective evaluation on 455 patients treated in the United States.
BACKGROUND: Median age at diagnosis of patients with chronic lymphocytic leukemia (CLL) is \u3e 70 years. However, the majority of clinical trials do not reflect the demographics of CLL patients treated in the community. We examined treatment patterns, outcomes, and disease-related mortality in patients ≥ 75 years with CLL (E-CLL) in a real-world setting.
METHODS: The Connect® CLL registry is a multicenter, prospective observational cohort study, which enrolled 1494 adult patients between 2010-2014, at 199 US sites. Patients with CLL were enrolled within 2 months of initiating first line of therapy (LOT1) or a subsequent LOT (LOT ≥ 2). Kaplan-Meier methods were used to evaluate overall survival. CLL- and infection-related mortality were assessed using cumulative incidence functions (CIF) and cause-specific hazards. Logistic regression was used to develop a classification model.
RESULTS: A total of 455 E-CLL patients were enrolled; 259 were enrolled in LOT1 and 196 in LOT ≥ 2. E-CLL patients were more likely to receive rituximab monotherapy (19.3 vs. 8.6%; p \u3c 0.0001) and chemotherapy-alone regimens (p \u3c 0.0001) than younger patients. Overall and complete responses were lower in E-CLL patients than younger patients when given similar regimens. With a median follow-up of 3 years, CLL-related deaths were higher in E-CLL patients than younger patients in LOT1 (12.6 vs. 5.1% p = 0.0005) and LOT ≥ 2 (31.3 vs. 21.5%; p = 0.0277). Infection-related deaths were also higher in E-CLL patients than younger patients in LOT1 (7.4 vs. 2.7%; p = 0.0033) and in LOT ≥ 2 (16.2 vs. 11.2%; p = 0.0786). A prognostic score for E-CLL patients was developed: time from diagnosis to treatment \u3c 3 months, enrollment therapy other than bendamustine/rituximab, and anemia, identified patients at higher risk of inferior survival. Furthermore, higher-risk patients experienced an increased risk of CLL- or infection-related death (30.6 vs 10.3%; p = 0.0006).
CONCLUSION: CLL- and infection-related mortality are higher in CLL patients aged ≥ 75 years than younger patients, underscoring the urgent need for alternative treatment strategies for these understudied patients.
TRIAL REGISTRATION: The Connect CLL registry was registered at clinicaltrials.gov: NCT01081015 on March 4, 2010
3-Amino-1,2,4-Triazole Tetramer: Electrical Conductivity Related To The Doped Degree
A study on the electrical conductivity and thermal behavior of the new oligomer 3-amino-1,2,4- triazole tetramer, related to the doped degree and temperature in the range of 300 K ≤ T ≤ 370 K has been performed. Sample doped in acid medium, at room temperature, showed the highest electrical conductivity (7.0 10-3 S / cm), whereas neutral or basic samples presented two orders minor values of electrical conductivity. Morphological and structural characteristics are discussed. This new organic semiconductor can be prepared as a thin film in order to explore its optical properties. The results show that the energy at which absorption starts corresponds to the direct band gap at 1.7 eV. As the organic semiconductor OATA may be used to prepare large-area thin film and flexible device on low-price, flexible substrates by means of solution method, the authors deduce that this oligomer may have an important application potential in UV-Vis optoelectronic detecting or lighting fieldFil: Lamanna, Melisa Elsa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Polímeros y Materiales Compuestos; Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina;Fil: de la Horra, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería;Fil: Jacobo, Silvia Elena. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Química; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería;Fil: D'accorso, Norma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina
A method to localize gamma-ray bursts using POLAR
The hard X-ray polarimeter POLAR aims to measure the linear polarization of
the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts
(GRBs). The position in the sky of the detected GRBs is needed to determine
their level of polarization. We present here a method by which, despite of the
polarimeter incapability of taking images, GRBs can be roughly localized using
POLAR alone. For this purpose scalers are attached to the output of the 25
multi-anode photomultipliers (MAPMs) that collect the light from the POLAR
scintillator target. Each scaler measures how many GRB photons produce at least
one energy deposition above 50 keV in the corresponding MAPM. Simulations show
that the relative outputs of the 25 scalers depend on the GRB position. A
database of very strong GRBs simulated at 10201 positions has been produced.
When a GRB is detected, its location is calculated searching the minimum of the
chi2 obtained in the comparison between the measured scaler pattern and the
database. This GRB localization technique brings enough accuracy so that the
error transmitted to the 100% modulation factor is kept below 10% for GRBs with
fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will
be useful for those cases where no other instruments are simultaneously
observing the same field of view.Comment: 13 pages, 10 figure
Real-world clinical experience in the Connect® chronic lymphocytic leukaemia registry: a prospective cohort study of 1494 patients across 199 US centres.
The clinical course of chronic lymphocytic leukaemia (CLL) is heterogeneous, and treatment options vary considerably. The Connect® CLL registry is a multicentre, prospective observational cohort study that provides a real-world perspective on the management of, and outcomes for, patients with CLL. Between 2010 and 2014, 1494 patients with CLL and that initiated therapy, were enrolled from 199 centres throughout the USA (179 community-, 17 academic-, and 3 government-based centres). Patients were grouped by line of therapy at enrolment (LOT). We describe the clinical and demographic characteristics of, and practice patterns for, patients with CLL enrolled in this treatment registry, providing patient-level observational data that represent real-world experiences in the USA. Fluorescence in situ hybridization (FISH) analyses were performed on 49·3% of patients at enrolment. The most common genetic abnormalities detected by FISH were del(13q) and trisomy 12 (45·7% and 20·8%, respectively). Differences in disease characteristics and comorbidities were observed between patients enrolled in LOT1 and combined LOT2/≥3 cohorts. Important trends observed include the infrequent use of genetic prognostic testing, and differences in patient characteristics for patients receiving chemoimmunotherapy combinations. These data represent experiences of patients with CLL in the USA, which may inform treatment decisions in everyday practice
NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features
While the GPGPU paradigm is widely recognized as an effective approach to
high performance computing, its adoption in low-latency, real-time systems is
still in its early stages.
Although GPUs typically show deterministic behaviour in terms of latency in
executing computational kernels as soon as data is available in their internal
memories, assessment of real-time features of a standard GPGPU system needs
careful characterization of all subsystems along data stream path.
The networking subsystem results in being the most critical one in terms of
absolute value and fluctuations of its response latency.
Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network
Interface Card (NIC) design featuring a configurable and extensible set of
network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler
GPU memories.
NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE
(10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency
KM3link - channels, but its modularity allows for a straightforward inclusion
of other link technologies.
To avoid host OS intervention on data stream and remove a possible source of
jitter, the design includes a network/transport layer offload module with
cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division
Multiplexing and APElink protocols.
After NaNet architecture description and its latency/bandwidth
characterization for all supported links, two real world use cases will be
presented: the GPU-based low level trigger for the RICH detector in the NA62
experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino
telescope
Are standard cell culture conditions adequate for human umbilical cord blood mesenchymal stem cells?
GPU-based Real-time Triggering in the NA62 Experiment
Over the last few years the GPGPU (General-Purpose computing on Graphics
Processing Units) paradigm represented a remarkable development in the world of
computing. Computing for High-Energy Physics is no exception: several works
have demonstrated the effectiveness of the integration of GPU-based systems in
high level trigger of different experiments. On the other hand the use of GPUs
in the low level trigger systems, characterized by stringent real-time
constraints, such as tight time budget and high throughput, poses several
challenges. In this paper we focus on the low level trigger in the CERN NA62
experiment, investigating the use of real-time computing on GPUs in this
synchronous system. Our approach aimed at harvesting the GPU computing power to
build in real-time refined physics-related trigger primitives for the RICH
detector, as the the knowledge of Cerenkov rings parameters allows to build
stringent conditions for data selection at trigger level. Latencies of all
components of the trigger chain have been analyzed, pointing out that
networking is the most critical one. To keep the latency of data transfer task
under control, we devised NaNet, an FPGA-based PCIe Network Interface Card
(NIC) with GPUDirect capabilities. For the processing task, we developed
specific multiple ring trigger algorithms to leverage the parallel architecture
of GPUs and increase the processing throughput to keep up with the high event
rate. Results obtained during the first months of 2016 NA62 run are presented
and discussed
- …
