150 research outputs found

    Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates

    Get PDF
    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation

    Identification of a Novel Response Regulator, Crr1, That Is Required for Hydrogen Peroxide Resistance in Candida albicans

    Get PDF
    Candida albicans colonises numerous niches within humans and thus its success as a pathogen is dependent on its ability to adapt to diverse growth environments within the host. Two component signal transduction is a common mechanism by which bacteria respond to environmental stimuli and, although less common, two component-related pathways have also been characterised in fungi. Here we report the identification and characterisation of a novel two component response regulator protein in C. albicans which we have named CRR1 (Candida Response Regulator 1). Crr1 contains a receiver domain characteristic of response regulator proteins, including the conserved aspartate that receives phosphate from an upstream histidine kinase. Significantly, orthologues of CRR1 are present only in fungi belonging to the Candida CTG clade. Deletion of the C. albicans CRR1 gene, or mutation of the predicted phospho-aspartate, causes increased sensitivity of cells to the oxidising agent hydrogen peroxide. Crr1 is present in both the cytoplasm and nucleus, and this localisation is unaffected by oxidative stress or mutation of the predicted phospho-aspartate. Furthermore, unlike the Ssk1 response regulator, Crr1 is not required for the hydrogen peroxide-induced activation of the Hog1 stress-activated protein kinase pathway, or for the virulence of C. albicans in a mouse model of systemic disease. Taken together, our data suggest that Crr1, a novel response regulator restricted to the Candida CTG clade, regulates the response of C. albicans cells to hydrogen peroxide in a Hog1-independent manner that requires the function of the conserved phospho-aspartate

    Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose

    Get PDF
    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on d-sorbitol, small amounts of d-maltose or d-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by d-maltose or d-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on d-maltose and β-xylosidase D on d-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra d-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of d-xylose or d-maltose. Furthermore, d-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers d-maltose and d-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by d-maltose or d-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for d-xylose induction, d-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation

    Curcumin Alleviates Matrix Metalloproteinase-3 and -9 Activities during Eradication of Helicobacter pylori Infection in Cultured Cells and Mice

    Get PDF
    Current therapy-regimens against Helicobacter pylori (Hp) infections have considerable failure rates and adverse side effects that urge the quest for an effective alternative therapy. We have shown that curcumin is capable of eradicating Hp-infection in mice. Here we examine the mechanism by which curcumin protects Hp infection in cultured cells and mice. Since, MMP-3 and -9 are inflammatory molecules associated to the pathogenesis of Hp-infection, we investigated the role of curcumin on inflammatory MMPs as well as proinflammatory molecules. Curcumin dose dependently suppressed MMP-3 and -9 expression in Hp infected human gastric epithelial (AGS) cells. Consistently, Hp-eradication by curcumin-therapy involved significant downregulation of MMP-3 and -9 activities and expression in both cytotoxic associated gene (cag)+ve and cag-ve Hp-infected mouse gastric tissues. Moreover, we demonstrate that the conventional triple therapy (TT) alleviated MMP-3 and -9 activities less efficiently than curcumin and curcumin's action on MMPs was linked to decreased pro-inflammatory molecules and activator protein-1 activation in Hp-infected gastric tissues. Although both curcumin and TT were associated with MMP-3 and -9 downregulation during Hp-eradication, but unlike TT, curcumin enhanced peroxisome proliferator-activated receptor-γ and inhibitor of kappa B-α. These data indicate that curcumin-mediated healing of Hp-infection involves regulation of MMP-3 and -9 activities

    A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches

    Get PDF
    Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch

    Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

    Get PDF
    Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer

    Forest biodiversity, ecosystem functioning and the provision of ecosystem services

    Get PDF
    Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services

    Evidence for Static Stress Changes Triggering the 1999 Eruption of Cerro Negro Volcano, Nicaragua and Regional Aftershock Sequences

    Get PDF
    Remarkable evidence of coupling between tectonic and magmatic events emerges from investigation of three tectonic earthquakes, aftershock sequences and eruption of Cerro Negro volcano, Nicaragua in 1999. Here, we explain this coupling through static stress changes following three Mw 5.2 earthquakes. We use focal mechanism solutions to estimate fault system geometry and magnitude of slip from these events, which are then used to calculate the change in minimum horizontal principal stress (σ3) for the region and the change in Coulomb failure stress on optimally oriented fault planes. Results of these simulations indicate that σ3 was reduced by ∼0.08 MPa and that Coulomb failure stress was raised by 0.001 to 0.2 MPa in the region. A Kolmogorov-Smirnov test demonstrates spatial correlation of Coulomb failure stress changes and triggered seismicity and volcanism, and suggests that these small changes in static stress can trigger subsequent geophysical events under appropriate circumstances
    corecore