30 research outputs found

    A Magnetohydrodynamic enhanced entry system for space transportation: MEESST

    Get PDF
    This paper outlines the initial development of a novel magnetohydrodynamic (MHD) plasma control system which aims at mitigating shock-induced heating and the radio-frequency communication blackout typically encountered during (re-)entry into planetary atmospheres. An international consortium comprising universities, SMEs, research institutions, and industry has been formed in order to develop this technology within the MEESST project. The latter is funded by the Future and Emerging Technologies (FET) program of the European Commission’s Horizon 2020 scheme (grant no. 899298). Atmospheric entry imposes one of the harshest environments which a spacecraft can experience. The combination of hypersonic velocities and the rapid compression of atmospheric particles by the spacecraft leads to high-enthalpy, partially ionised gases forming around the vehicle. This inhibits radio communications and induces high thermal loads on the spacecraft surface. For the former problem, spacecraft can sometimes rely on satellite constellations for communicating through the plasma wake and therefore preventing the blackout. On the other hand, expensive, heavy, and non-reusable thermal protection systems (TPS) are needed to dissipate the severe thermal loads. Such TPS can represent up to 30% of an entry vehicles weight, and especially for manned missions they can reduce the cost- efficiency by sacrificing payload mass. Such systems are also prone to failure, putting the lives of astronauts at risk. The use of electromagnetic fields to exploit MHD principles has long been considered as an attractive solution for tackling the problems described above. By pushing the boundary layer of the ionized gas layer away from the spacecraft, the thermal loads can be reduced, while also opening a magnetic window for radio communications and mitigating the blackout phenomenon. The application of this MHD-enabled system has previously not been demonstrated in realistic conditions due to the required large magnetic fields (on the order of Tesla or more), which for conventional technologies would demand exceptionally heavy and power-hungry electromagnets. High-temperature superconductors (HTS) have reached a level of industrial maturity sufficient for them to act as a key enabling technology for this application. Thanks to superior current densities, HTS coils can offer the necessary low weight and compactness required for space applications, with the ability to generate the strong magnetic fields needed for entry purposes. This paper provides an overview of the MEESST project, including its goals, methodology and some preliminary design considerations

    Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (CO<sub>PAC</sub>) measurement by the pulmonary artery catheter (PAC). However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (CO<sub>AP</sub>) device (FloTrac™, Vigileo™; Edwards Lifesciences, Irvine, CA, USA) only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU) using CO<sub>PAC </sub>as the method of reference.</p> <p>Methods</p> <p>We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 ± 18.8 years), who required both arterial and pulmonary artery pressure monitoring. CO<sub>PAC </sub>measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while CO<sub>AP </sub>values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman.</p> <p>Results</p> <p>A total of 164 coupled measurements were obtained. Absolute values of CO<sub>PAC </sub>ranged from 2.80 to 10.80 l/min (mean 5.93 ± 1.55 l/min). The bias and limits of agreement between CO<sub>PAC </sub>and CO<sub>AP </sub>for unequal numbers of replicates was 0.02 ± 2.92 l/min. The percentage error between CO<sub>PAC </sub>and CO<sub>AP </sub>was 49.3%. The bias between percentage changes in CO<sub>PAC </sub>(ΔCO<sub>PAC</sub>) and percentage changes in CO<sub>AP </sub>(ΔCO<sub>AP</sub>) for consecutive measurements was -0.70% ± 32.28%. CO<sub>PAC </sub>and CO<sub>AP </sub>showed a Pearson correlation coefficient of 0.58 (<it>p </it>< 0.01), while the correlation coefficient between ΔCO<sub>PAC </sub>and ΔCO<sub>AP </sub>was 0.46 (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Although the CO<sub>AP </sub>algorithm shows a minimal bias with CO<sub>PAC </sub>over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore, the used algorithm (V 1.03) failed to demonstrate an acceptable accuracy in comparison to the clinical standard of cardiac output determination.</p

    The Effect of Pulmonary Artery Catheter Use on Costs and Long-Term Outcomes of Acute Lung Injury

    Get PDF
    Background: The pulmonary artery catheter (PAC) remains widely used in acute lung injury (ALI) despite known complications and little evidence of improved short-term mortality. Concurrent with NHLBI ARDS Clinical Trials Network Fluid and Catheters Treatment Trial (FACTT), we conducted a prospectively-defined comparison of healthcare costs and long-term outcomes for care with a PAC vs. central venous catheter (CVC). We explored if use of the PAC in ALI is justified by a beneficial cost-effectiveness profile. Methods: We obtained detailed bills for the initial hospitalization. We interviewed survivors using the Health Utilities Index Mark 2 questionnaire at 2, 6, 9 and 12 m to determine quality of life (QOL) and post-discharge resource use. Outcomes beyond 12 m were estimated from federal databases. Incremental costs and outcomes were generated using MonteCarlo simulation. Results: Of 1001 subjects enrolled in FACTT, 774 (86%) were eligible for long-term follow-up and 655 (85%) consented. Hospital costs were similar for the PAC and CVC groups (96.8kvs.96.8k vs. 89.2k, p = 0.38). Post-discharge to 12 m costs were higher for PAC subjects (61.1kvs.45.4k,p=0.03).OneyearmortalityandQOLamongsurvivorsweresimilarinPACandCVCgroups(mortality:35.661.1k vs. 45.4k, p = 0.03). One-year mortality and QOL among survivors were similar in PAC and CVC groups (mortality: 35.6% vs. 31.9%, p = 0.33; QOL [scale: 0-1]: 0.61 vs. 0.66, p = 0.49). MonteCarlo simulation showed PAC use had a 75.2% probability of being more expensive and less effective (mean cost increase of 14.4k and mean loss of 0.3 quality-adjusted life years (QALYs)) and a 94.2% probability of being higher than the $100k/QALY willingness-to-pay threshold. Conclusion: PAC use increased costs with no patient benefit and thus appears unjustified for routine use in ALI. Trial Registration: www.clinicaltrials.gov NCT00234767. © 2011 Clermont et al

    A Magnetohydrodynamic enhanced entry system for space transportation: MEESST

    Get PDF
    This paper outlines the initial development of a novel magnetohydrodynamic (MHD) plasma control system which aims at mitigating shock-induced heating and the radio-frequency communication blackout typically encountered during (re-)entry into planetary atmospheres. An international consortium comprising universities, SMEs, research institutions, and industry has been formed in order to develop this technology within the MEESST project. The latter is funded by the Future and Emerging Technologies (FET) program of the European Commission’s Horizon 2020 scheme (grant no. 899298). Atmospheric entry imposes one of the harshest environments which a spacecraft can experience. The combination of hypersonic velocities and the rapid compression of atmospheric particles by the spacecraft leads to high-enthalpy, partially ionised gases forming around the vehicle. This inhibits radio communications and induces high thermal loads on the spacecraft surface. For the former problem, spacecraft can sometimes rely on satellite constellations for communicating through the plasma wake and therefore preventing the blackout. On the other hand, expensive, heavy, and non-reusable thermal protection systems (TPS) are needed to dissipate the severe thermal loads. Such TPS can represent up to 30% of an entry vehicles weight, and especially for manned missions they can reduce the cost- efficiency by sacrificing payload mass. Such systems are also prone to failure, putting the lives of astronauts at risk. The use of electromagnetic fields to exploit MHD principles has long been considered as an attractive solution for tackling the problems described above. By pushing the boundary layer of the ionized gas layer away from the spacecraft, the thermal loads can be reduced, while also opening a magnetic window for radio communications and mitigating the blackout phenomenon. The application of this MHD-enabled system has previously not been demonstrated in realistic conditions due to the required large magnetic fields (on the order of Tesla or more), which for conventional technologies would demand exceptionally heavy and power-hungry electromagnets. High-temperature superconductors (HTS) have reached a level of industrial maturity sufficient for them to act as a key enabling technology for this application. Thanks to superior current densities, HTS coils can offer the necessary low weight and compactness required for space applications, with the ability to generate the strong magnetic fields needed for entry purposes. This paper provides an overview of the MEESST project, including its goals, methodology and some preliminary design considerations

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Methodology for the assessment of human health risks associated with the consumption of chemical contaminated freshwater fish in South Africa

    No full text
    Studies have shown that the aquatic environment can be polluted by contaminates that are accumulated by freshwater fish and this may pose a health risk to the consumers of the contaminated fish. Developed counties like the United States of America have developed strategies and associated guidance documentation to conduct chemical contaminant surveys using fish and to use these data to reduce the heath risk to the consumers of the fish. In this paper a generic methodology is presented that will give guidance in the undertaking of fish contaminant surveys to provide information regarding the possible health risk if the fish are consumed by recreational and subsistence fishermen in South Africa. The fundamentals of the methodology are based on catchment information, socio-demographic information of consumers of fish in the catchment, bioaccumulation potential and health risks of analytes, sound sampling design, risk assessment procedures and performing monitoring at different scales and depths. These aspects are presented as 10 major steps in the methodology of which the basic requirements are discussed to focus the surveys and optimise the application of resources. Although the methodology focuses on assessing the possible health risk to the consumers of fish many of the aspects would apply to any investigation aimed at assessing the chemical contaminant levels in fish. Furthermore as these surveys identify areas in the aquatic system where fish have unacceptably high chemical contaminant levels, this information can be used in catchment management programmes to put remedial actions in place that would ensure that the fish populations of the system are fit for present and future human consumption. Water SA Vol.29(1) 2003: 69-9

    Accuracy of a novel approach to measuring arterial thermodilution cardiac output during intra-aortic counterpulsation

    Full text link
    Objective: To assess the agreement between a novel approach of arterial and the pulmonary artery bolus thermodilution for measuring cardiac output in critically ill patients during aortic counterpulsation. Methods: Eighteen male patients aged 37-80years, undergoing preoperative insertion of an intra-aortic balloon pump (IABP) and elective coronary artery bypass grafting. A thin 1.3FG thermistor was introduced through the pressure lumen to the tip of an 8FG IABP catheter, and the pump rate was set at 1:1. After arrival in the intensive care unit cardiac output (CO) was measured under haemodynamic steady-state conditions hourly for 8-11h, and arterial bolus thermodilution (BCOiabp) and pulmonary artery bolus thermodilution (BCOpulm) were determined after the patients' admission to the intensive care unit. Results: A total of 198 data pairs were obtained: 177 with aortic counterpulsation and 21 without. During aortic counterpulsation, median CO was 6.8l/min for BCOiabp and 6.1l/min for BCOpulm, without aortic counterpulsation; corresponding values were 7.1l/min for BCOiabp and 6.5l/min for BCOpulm with aortic counterpulsation. Mean bias was +0.77l/min, limits of agreement ( ± 2SD) were -1.27/+2.81l/min, and mean error (2SD/[(BCOiabp+BCOpulm)/2] was 31.4%. Without aortic counterpulsation, corresponding values were +0.43l/min, -1.03/+1.87l/min, and 22.4%. Conclusions: Agreement between BCOiabp and BCOpulm was satisfactory for CO values between 2.0 and 10l/min only without aortic counterpulsation. BCOiabp CO measurements during aortic counterpulsation after coronary artery bypass grafting cannot be recommended at the present tim
    corecore