269 research outputs found

    New strategies for neuroprotection in glaucoma,a disease that affects the central nervous system

    Get PDF
    Glaucoma is a disease where retinal ganglion cells (RGC) are specifically affected though a number of evidences endorse the hypothesis that glaucoma is a neuro-degenerative disorder of the central nervous system and suggest a possible connection between glaucomatous damage and cerebrovascular alterations. The mechanisms underlying RGC loss are not yet fully known but alterations of the autophagy machinery have been recently proposed as a potential contributing factor as for Alzheimer's disease. Here we review the current literature on new strategies for neuroprotection in glaucoma, focusing on pharmacologic strategies to minimize RGC damage

    Variable clinical expression of Stickler Syndrome: A case report of a novel COL11A1 mutation

    Get PDF
    Background: Stickler Syndrome is a rare connective tissue disorder, characterized by clinical, and genetic heterogeneity. The clinical expression is highly variable, including moderate to severe myopia in childhood, hearing loss, facial dysmorphic features, cleft palate, and early osteoarthritis. COL2A1, COL11A1, and COL11A2 mutations account of the majority of autosomal dominant Stickler Syndrome and, in particular, a heterozygous mutation in COL11A1 gene is identified in about 10 to 20% of Stickler Syndrome patients. Methods: Herein, we report a case of an 8-year- old child with Stickler Syndrome, presenting with early-onset of myopia with vitreal abnormalities, facial dysmorphic characteristics, and mild hearing loss later in childhood. To identify the underlying genetic cause, Whole Exome Sequencing was carried out for COL11A1 gene. Results: A novel de novo heterozygous splice site variant (NM_001854: c.1845 + 5G> C) of the COL11A1 gene, which had not been previously reported, was identified by Whole Exome Sequencing. Conclusion: We reported a novel COL11A1 mutation in a child with Stickler Syndrome presenting a phenotype of early-onset of ocular anomalies and mild hearing loss later in childhood. Our findings confirm the variability of the expression of the disease, even in the contest of the same gene-related disorder, thus, contributing to improve the knowledge on clinical and molecular basis of this rare disease

    Titanium functionalized with polylysine homopolymers: In vitro enhancement of cells growth

    Get PDF
    In oral implantology, the success and persistence of dental implants over time are guar-anteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival

    Titanium Functionalized with Polylysine Homopolymers: In Vitro Enhancement of Cells Growth

    Get PDF
    In oral implantology, the success and persistence of dental implants over time are guaranteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival

    BIOF\u2013HILO assay: A new MALDI\u2013TOF mass spectrometry based method for discriminating between high-and low-biofilm-producing candida parapsilosis isolates

    Get PDF
    Candida parapsilosis is the most frequent cause of catheter-related candidemia among non-Candida albicans species. This may be related to intrinsic capabilities as adhering and forming a biofilm on abiotic surfaces such as on medical devices. As previously demonstrated, patients infected with high biofilm-producing C. parapsilosis isolates had a greater mortality risk compared to patients infected with low biofilm-producing C. parapsilosis isolates. We developed the BIOF\u2013HILO assay, a MALDI\u2013TOF mass spectrometry (MS)-based assay, which compares mass spectra obtained from attached and suspended isolate cells during the early (i.e., 3-h) adhesion phase of in vitro biofilm formation. The composite correlation index (CCI) analysis was used to discriminate between mass spectra differences of the two cell types, classifying all 50 C. parapsilosis clinical isolates, included in the study, after only 3-h of testing, in high or low biofilm producers. All high (n = 25) or low (n = 25) biofilm producers had, according to CCI mass spectra comparison values, higher or lower than one CCI ratios, which were obtained by dividing the CCIsuspendedcells by the CCIattachedcells . In conclusion, the BIOF\u2013HILO assay allows a rapid categorization of C. parapsilosis clinical isolates in high or low biofilm producers. This information, if timely provided to physicians, may improve treatment outcomes in patients with C. parapsilosis candidemia

    Human adipose stem cell differentiation is highly affected by cancer cells both in vitro and in vivo : implication for autologous fat grafting

    Get PDF
    Recent studies showed that mesenchymal stem cells derived from adipose tissue can promote tumour progression, raising some concerns regarding their use in regenerative medicine. In this context, we co-cultured either SAOS2 osteosarcoma or MCF7 breast cancer cells with human adipose stem cells (hASCs), in order to evaluate potential effects of cancer cells on hASCs differentiation, in vitro and in vivo. In this study we observed that both SAOS2 and MCF7 cell lines induced an increase in hASCs proliferation, compared to hASCs alone, but, surprisingly, neither changes in the expression of CD90, CD29, CD324 and vimentin, nor variations in the Twist and Slug mRNAs were detectable. Noteworthy, SAOS2 and MCF7 cells induced in hASCs an upregulation of CD34 expression and stemness genes, including OCT3/4, Nanog, Sox2 and leptin, and a decrease in angiogenic factors, including CD31, PDGF\u3b1, PDGFR\u3b1, PDGFR\u3b2 and VEGF. SMAD and pSMAD2/3 increased only in hASCs alone. After 21 days of co-culture, hASCs differentiated both in adipocytes and endothelial cells. Moreover, co-injection of MCF7 cells with hASCs led to the formation of a highly vascularized tumour. Taken together our findings suggest that mesenchymal stem cells, under tumour cell induction, do not differentiate in vitro or facilitate the angiogenesis of the tumour in vivo, thus opening interesting new scenarios in the relationship between cancer and stem cells. These findings may also lead to greater caution, when managing autologous fat grafts in cancer patients

    Human adipose stem cell differentiation is highly affected by cancer cells both in vitro and in vivo: implication for autologous fat grafting

    Get PDF
    Recent studies showed that mesenchymal stem cells derived from adipose tissue can promote tumour progression, raising some concerns regarding their use in regenerative medicine. In this context, we co-cultured either SAOS2 osteosarcoma or MCF7 breast cancer cells with human adipose stem cells (hASCs), in order to evaluate potential effects of cancer cells on hASCs differentiation, in vitro and in vivo. In this study we observed that both SAOS2 and MCF7 cell lines induced an increase in hASCs proliferation, compared to hASCs alone, but, surprisingly, neither changes in the expression of CD90, CD29, CD324 and vimentin, nor variations in the Twist and Slug mRNAs were detectable. Noteworthy, SAOS2 and MCF7 cells induced in hASCs an upregulation of CD34 expression and Stemness genes, including OCT3/4, Nanog, Sox2 and leptin, and a decrease in angiogenic factors, including CD31, PDGFα, PDGFRα, PDGFRβ and VEGF. SMAD and pSMAD2/3 increased only in hASCs alone. After 21 days of co-culture, hASCs differentiated both in adipocytes and endothelial cells. Moreover, co-injection of MCF7 cells with hASCs led to the formation of a highly vascularized tumour. Taken together our findings suggest that mesenchymal stem cells, under tumour cell induction, do not differentiate in vitro or facilitate the angiogenesis of the tumour in vivo, thus opening interesting new scenarios in the relationship between cancer and stem cells. These findings may also lead to greater caution, when managing autologous fat grafts in cancer patients
    corecore