92 research outputs found

    Effector CD4+ T Cell Expression Signatures and Immune-Mediated Disease Associated Genes

    Get PDF
    Genome-wide association studies (GWAS) in immune-mediated diseases have identified over 150 associated genomic loci. Many of these loci play a role in T cell responses, and regulation of T cell differentiation plays a critical role in immune-mediated diseases; however, the relationship between implicated disease loci and T cell differentiation is incompletely understood. To further address this relationship, we examined differential gene expression in naïve human CD4+ T cells, as well as in in vitro differentiated Th1, memory Th17-negative and Th17-enriched CD4+ T cells subsets using microarray and RNASeq. We observed a marked enrichment for increased expression in memory CD4+ compared to naïve CD4+ T cells of genes contained among immune–mediated disease loci. Within memory T cells, expression of disease-associated genes was typically increased in Th17-enriched compared to Th17-negative cells. Utilizing RNASeq and promoter methylation studies, we identified a differential regulation pattern for genes solely expressed in Th17 cells (IL17A and CCL20) compared to genes expressed in both Th17 and Th1 cells (IL23R and IL12RB2), where high levels of promoter methylation are correlated to near zero RNASeq levels for IL17A and CCL20. These findings have implications for human Th17 celI plasticity and for the regulation of Th17-Th1 expression signatures. Importantly, utilizing RNASeq we found an abundant isoform of IL23R terminating before the transmembrane domain that was enriched in Th17 cells. In addition to molecular resolution, we find that RNASeq provides significantly improved power to define differential gene expression and identify alternative gene variants relative to microarray analysis. The comprehensive integration of differential gene expression between cell subsets with disease-association signals, and functional pathways provides insight into disease pathogenesis

    Risk mitigating behaviours in people with inflammatory skin and joint disease during the COVID-19 pandemic differ by treatment type:a cross-sectional patient survey

    Get PDF
    BACKGROUND: Registry data suggest that people with immune-mediated inflammatory diseases (IMIDs) receiving targeted systemic therapies have fewer adverse coronavirus disease 2019 (COVID-19) outcomes compared with patients receiving no systemic treatments. OBJECTIVES: We used international patient survey data to explore the hypothesis that greater risk-mitigating behaviour in those receiving targeted therapies may account, at least in part, for this observation. METHODS: Online surveys were completed by individuals with psoriasis (globally) or rheumatic and musculoskeletal diseases (RMDs) (UK only) between 4 May and 7 September 2020. We used multiple logistic regression to assess the association between treatment type and risk-mitigating behaviour, adjusting for clinical and demographic characteristics. We characterized international variation in a mixed-effects model. RESULTS: Of 3720 participants (2869 psoriasis, 851 RMDs) from 74 countries, 2262 (60·8%) reported the most stringent risk-mitigating behaviour (classified here under the umbrella term 'shielding'). A greater proportion of those receiving targeted therapies (biologics and Janus Kinase inhibitors) reported shielding compared with those receiving no systemic therapy [adjusted odds ratio (OR) 1·63, 95% confidence interval (CI) 1·35-1·97]. The association between targeted therapy and shielding was preserved when standard systemic therapy was used as the reference group (OR 1·39, 95% CI 1·23-1·56). Shielding was associated with established risk factors for severe COVID-19 [male sex (OR 1·14, 95% CI 1·05-1·24), obesity (OR 1·37, 95% CI 1·23-1·54), comorbidity burden (OR 1·43, 95% CI 1·15-1·78)], a primary indication of RMDs (OR 1·37, 95% CI 1·27-1·48) and a positive anxiety or depression screen (OR 1·57, 95% CI 1·36-1·80). Modest differences in the proportion shielding were observed across nations. CONCLUSIONS: Greater risk-mitigating behaviour among people with IMIDs receiving targeted therapies may contribute to the reported lower risk of adverse COVID-19 outcomes. The behaviour variation across treatment groups, IMIDs and nations reinforces the need for clear evidence-based patient communication on risk-mitigation strategies and may help inform updated public health guidelines as the pandemic continues

    Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition

    Get PDF
    Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT).Explant-derived cells were generated from partially digested atrial tissue. After 21 days in culture, c-Kit+ cells were isolated from cell outgrowth. The majority of explant-originated c-Kit+ cells expressed the epicardial marker Wt1. Cardiac cell outgrowth exhibits a temporal up-regulation of EMT-markers. Notch stimulation augmented, while Notch inhibition suppressed, mesenchymal transition in both c-Kit+ and c-Kit- cells. In c-Kit+ cells, Notch stimulation reduced, while Notch inhibition up-regulated pluripotency marker expressions such as Nanog and Sox2. Notch induction was associated with degradation of β-catenin in c-Kit- cells. In contrast, Notch inhibition resulted in β-catenin accumulation, acquisition of epitheloid morphology, and up-regulation of Wnt target genes in c-Kit- cells.Our study suggests that Notch-mediated reversible EMT process is a mechanism that regulates explant-derived c-Kit+ and c-Kit- cells

    Cetaceans in the Mediterranean Sea. Encounter rate, dominant species, and diversity hotspots

    Get PDF
    We investigated the presence and diversity of cetaceans in the Mediterranean Sea, analysing the data collected by 32 different research units, over a period of 15 years (2004–2018), and shared on the common web-GIS platform named Intercet. We used the encounter rate, the species prevalence, and the Shannon diversity index as parameters for data analysis. The results show that cetacean diversity, in the context of the Mediterranean basin, is generally quite low when compared with the eastern Atlantic, as few species, namely the striped dolphin, the bottlenose dolphin, the fin whale, and the sperm whale, dominate over all the others. However, some areas, such as the Alboran Sea or the north-western Mediterranean Sea, which includes the Pelagos Sanctuary (the Specially Protected Area of Mediterranean Interest located in the northern portion of the western basin), show higher levels of diversity and should be considered hotspots to be preserved. Primary production and seabed profile seem to be the two main drivers influencing the presence and distribution of cetaceans, with the highest levels of diversity observed in areas characterized by high levels of primary production and high bathymetric variability and gradient. This collective work underlines the importance of data sharing to deepen our knowledge on marine fauna at the scale of the whole Mediterranean Sea and encourages greater efforts in the networking process, also to accomplish the requirements of the Marine Strategy Framework Directive, with particular reference to Descriptor 1: biological diversity is maintained

    Nonadherence to systemic immune-modifying therapy in people with psoriasis during the COVID-19 pandemic : Findings from a global cross-sectional survey

    Get PDF
    Nonadherence to immune-modifying therapy is a complex behaviour which, before the COVID-19 pandemic, was shown to be associated with mental health disorders in people with immune-mediated diseases. The COVID-19 pandemic has led to a rise in the global prevalence of anxiety and depression, and limited data exist on the association between mental health and nonadherence to immune-modifying therapy during the pandemic. To assess the extent of and reasons underlying nonadherence to systemic immune-modifying therapy during the COVID-19 pandemic in individuals with psoriasis, and the association between mental health and nonadherence. Online self-report surveys (PsoProtectMe), including validated screens for anxiety and depression, were completed globally during the first year of the pandemic. We assessed the association between anxiety or depression and nonadherence to systemic immune-modifying therapy using binomial logistic regression, adjusting for potential cofounders (age, sex, ethnicity, comorbidity) and country of residence. Of 3980 participants from 77 countries, 1611 (40.5%) were prescribed a systemic immune-modifying therapy. Of these, 408 (25.3%) reported nonadherence during the pandemic, most commonly due to concerns about their immunity. In the unadjusted model, a positive anxiety screen was associated with nonadherence to systemic immune-modifying therapy [odds ratio (OR) 1.37, 95% confidence interval (CI) 1.07-1.76]. Specifically, anxiety was associated with nonadherence to targeted therapy (OR 1.41, 95% CI 1.01-1.96) but not standard systemic therapy (OR 1.16, 95% CI 0.81-1.67). In the adjusted model, although the directions of the effects remained, anxiety was not significantly associated with nonadherence to overall systemic (OR 1.20, 95% CI 0.92-1.56) or targeted (OR 1.33, 95% CI 0.94-1.89) immune-modifying therapy. A positive depression screen was not strongly associated with nonadherence to systemic immune-modifying therapy in the unadjusted (OR 1.22, 95% CI 0.94-1.57) or adjusted models (OR 1.14, 95% CI 0.87-1.49). These data indicate substantial nonadherence to immune-modifying therapy in people with psoriasis during the pandemic, with attenuation of the association with mental health after adjusting for confounders. Future research in larger populations should further explore pandemic-specific drivers of treatment nonadherence. Clear communication of the reassuring findings from population-based research regarding immune-modifying therapy-associated adverse COVID-19 risks to people with psoriasis is essential, to optimize adherence and disease outcomes

    In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1

    Get PDF
    Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair

    Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era

    Get PDF
    Abstract Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci.http://deepblue.lib.umich.edu/bitstream/2027.42/109537/1/12920_2013_Article_485.pd
    corecore