2,513 research outputs found

    ENERGY FLOW AND GROUND REACTION FORCE PREDICTORS OF BAT SWING SPEED DURING PITCHED BALL BATTING IN PROFESSIONAL BASEBALL PLAYERS

    Get PDF
    The purposes of this study are to determine how mechanical energy is absorbed, generated, and transferred during baseball hitting for professional athletes. This study also aims to identify which ground reaction force and energy flow variables influence bat speed. The findings of this study suggest that energy flows from the trunk to the lead leg as the pelvis rotates towards the pitcher. The results of this study emphasize the crucial role of the back leg and trunk during acceleration as well as eccentric contraction of muscles in the lead leg and trunk to decelerate during follow-through. Training strategies that improve muscular strength and mobility of the trunk and hips can be implemented to potentially increase bat speed

    Sharpenings of Li's criterion for the Riemann Hypothesis

    Full text link
    Exact and asymptotic formulae are displayed for the coefficients λn\lambda_n used in Li's criterion for the Riemann Hypothesis. For nn \to \infty we obtain that if (and only if) the Hypothesis is true, λnn(Alogn+B)\lambda_n \sim n(A \log n +B) (with A>0A>0 and BB explicitly given, also for the case of more general zeta or LL-functions); whereas in the opposite case, λn\lambda_n has a non-tempered oscillatory form.Comment: 10 pages, Math. Phys. Anal. Geom (2006, at press). V2: minor text corrections and updated reference

    Strong-coupling Spin-singlet Superconductivity with Multiple Full Gaps in Hole-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 Probed by Fe-NMR

    Full text link
    We present 57^{57}Fe-NMR measurements of the novel normal and superconducting-state characteristics of the iron-arsenide superconductor Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 (TcT_c = 38 K). In the normal state, the measured Knight shift and nuclear spin-lattice relaxation rate (1/T1)(1/T_1) demonstrate the development of wave-number (qq)-dependent spin fluctuations, except at qq = 0, which may originate from the nesting across the disconnected Fermi surfaces. In the superconducting state, the spin component in the 57^{57}Fe-Knight shift decreases to almost zero at low temperatures, evidencing a spin-singlet superconducting state. The 57^{57}Fe-1/T11/T_1 results are totally consistent with a s±s^\pm-wave model with multiple full gaps, regardless of doping with either electrons or holes.Comment: 4 pages, 4 figures, 1 tabl

    Symmetry breaking orbital anisotropy on detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition

    Full text link
    Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant dxz and dyz character, which is consistent with anisotropy observed by other probes. For compositions x>0, for which the structural transition (TS) precedes the magnetic transition (TSDW), an anisotropic splitting is observed to develop above TSDW, indicating that it is specifically associated with TS. For unstressed crystals, the band splitting is observed close to TS, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.Comment: final version published in PNAS, including supplementary informatio

    On effective actions of BPS branes and their higher derivative corrections

    Get PDF
    We calculate in detail the disk level S-matrix element of one Ramond-Ramond field and three gauge field vertex operators in the world volume of BPS branes, to find four gauge field couplings to all orders of α\alpha' up to on-shell ambiguity. Then using these infinite couplings we find that the massless pole of the field theory amplitude is exactly equal to the massless pole S-matrix element of this amplitude for the p=np=n case to all orders of α\alpha'. Finally we show that the infinite massless poles and the contact terms of this amplitude for the p=n+2p=n+2 case can be reproduced by the Born-Infeld action and the Wess-Zumino actions and by their higher derivative corrections.Comment: 26 pages, 2 figures, minor corrections,references added and version published in JHE

    Tachyonic open inflationary universes

    Get PDF
    We study one-field open inflationary models in a universe dominated by tachyon matter. In these scenarios, we determine and characterize the existence of the Coleman-De Lucia (CDL) instanton. Also, we study the Lorentzian regime, that is, the period of inflation after tunnelling has occurred.Comment: 13 pages, 7 figures. Accepted by Physics Letters

    Cosmological anti-deSitter space-times and time-dependent AdS/CFT correspondence

    Full text link
    We study classes of five-dimensional cosmological solutions with negative curvature, which are obtained from static solutions by an exchange of a spatial and temporal coordinate, and in some cases by an analytic continuation. Such solutions provide a suitable laboratory to address the time-dependent AdS/CFT correspondence. For a specific example we address in detail the calculation of the boundary stress-energy and the Wilson line and find disagreement with the standard AdS/CFT correspondence. We trace these discrepancies to the time-dependent effects, such as particle creation, which we further study for specific backgrounds. We also identify specific time-dependent backgrounds that reproduce the correct conformal anomaly. For such backgrounds the calculation of the Wilson line in the adiabatic approximation indicates only a Coulomb repulsion.Comment: LaTeX file, 47 pages, discussion is extended, version to appear in PR
    corecore