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1 Introduction

A Dp-brane is a (p + 1)-dimensional hypersurface in a space-time defined such that open

strings can end on it. They are sources of Ramond-Ramond (P+1)-form fields in IIA and

IIB string theories [1]. They have been studied and many properties of them have been

investigated [2–4], being the center of attention both in theory and phenomenology. The

stable Dp-branes (p is even in IIA and odd in IIB theory) preserve half of supersymmetry.

This implies that the spectrum of open strings has 16 supersymmetries and has to be

tachyon-free. An important point is that the supersymmetry transformation requires the

momenta of the scattering states to be only along the brane directions.

In fact, stability, supersymmetry, conserved Ramond-Ramond (RR) charge and having

no tachyons are all properties of these type II Dp-branes. All supersymmetric Dp-branes

in IIA can be generated as bound states of D9-branes [5]. They can also be derived from

K-theory [6].

The world-volume theory of a Dp-brane involves a massless U(1) vector Aa, 9 − p

real massless scalars φi which describe transverse oscillations of the brane and their super

partner fermions [7]. At leading order, the low-energy action for these fields corresponds

to the dimensional reduction of a ten-dimensional U(1) super-Yang Mills theory. There are

higher order α′ = l2s corrections, where ls is the string length scale. When derivatives of the

field strengths (and second derivatives of the scalars) are small on the string scale, then the

action to all orders in the field strength takes the Born-Infeld form [8–10] (also see [11]).

On the other hand, when there are N coincident Dp-branes, the U(1) gauge symmetry

of a single Dp-brane is enhanced to the non-abelian U(N) symmetry [2]. The action for
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constructing non-abelian Dp-branes on a general background was given by Myers [12] and

other authors [13].

The low energy action describing the dynamics of Dp-branes consists of two parts. The

first part is Born-Infeld action

SBI = −Tp

∫

dp+1σ STr

(

e−φ
√

− det (P [Eab + Eai(Q−1 − δ)ijEjb] + λFab) det(Qi
j)

)

,

(1.1)

with

Eab = Gab +Bab , Qi
j ≡ δi

j + iλ [Φi,Φk]Ekj, (1.2)

where λ = 2πℓ2s, Tp is the brane tension, P[...] indicates pull-back of background metric

and NSNS two-form (a,b = 0, .., 9), Fab is the field strength of gauge field and STr(...) is

symmetric trace prescription. For more details see [12]. In addition BI action provides the

kinetic terms for the world-volume fields, it also contains the couplings of the Dp-brane to

the massless Neveu-Schwarz fields in the bulk. The second part is the Wess-Zumino action,

which contains the coupling of the U(N) massless world volume vectors to the closed string

RR field (indicated by C) [1, 14–16]

SWZ = µp

∫

Σ(p+1)

C ∧ Tr ei2πα′F . (1.3)

where Σ(p+1) is the world volume, Tr is over the Chan-Paton factors, µp is the RR charge

of branes and F is the field strength of the gauge field which defined F = 1
2Fabdx

a ∧ dxb.

Using the Taylor expansion one finds various couplings including two gauge fields, three

gauge fields and so on. Therefore the effective theory has two parts

SBPS = SBI + SWZ

One method for finding these effective actions is the BSFT. By applying this formalism we

can find WZ couplings. In this framework, it has been argued in [17] when the RR field is

constant, there is no higher derivative correction to the WZ couplings. The WZ term in

this formalism is given by [17, 18]

SWZ = µ′p

∫

Σ(p+1)

C ∧ Str ei2πα′F , (1.4)

in which F is the curvature of superconnection. To study WZ couplings for BPS branes

we use the second approach, which is the S-matrix method. As we are working with Born-

Infeld action in a flat background, we set Gab = ηab and Bab = 0. The Born-Infeld action

can be written as

SBI = −Tp

∫

dp+1σ STr

(

e−φ
√

− det(ηab + 2πα′Fab)

)

. (1.5)

One important tool in string theory is scattering theory. In fact, the string theory

corrections to field theory may be found perturbatively in α′ by means of scattering am-

plitude arguments. In string theory, one can narrate the scattering of closed strings from

a Dp-brane as follows :
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The string background is taken to be flat space, however, interactions of closed strings

with a Dp-brane are described by world-sheets with boundary. The boundary of world

sheets must be fixed to the surface at the position of the Dp-brane. In fact, we must

consider Dirichlet boundary conditions on the fields transverse to the Dp-brane and Neu-

mann boundary conditions on the fields along world volume of the Dp-brane [19, 20]. The

appearence of the Dp-brane physics has yielded a deep change in the significance of open

strings, with some efforts for explaining them being related to [21, 22]. It was conjectured

that quantum effects of open strings moving on Dp-branes will produce Dp-branes geom-

etry. Some previous works on scattering that involved a Dp-brane and some works about

applications on Dp-branes can be found in [23–37]. Firstly the massless vertex operators

were constructed for the external open strings on the Dp-branes. For the scattering of mass-

less states the Dp-brane geometry is the extremal case. One can calculate the scattering

of massless states from supersymmetric Dp-branes in type II theory.

T-duality transformation transforms Dp-branes from type IIA to type IIB. Using T-

duality transformation one can substitute a scalar field with a gauge field and vice versa.

Open string states on the Dp-brane do not have transverse components of their momenta.

In this paper, we would like to use T-duality to find higher derivative couplings of four

gauge fields from higher derivative couplings of four transverse scalar fields [38].

The organization of the paper is as follows. In section 2 we calculate a tree-level four

point string scattering including, one RR and three gauge field vertex operators in the world

volume type II superstring theory and make a few remarks by studying direct computations.

The world-volume theory can be described by Berkovits’s superstring field theory [39]. Also

the world-volume theory may be rewritten in terms of massless fields and an infinite number

of their derivatives. In section 3 we examine the low energy limit by sending all Mandelstam

variables to zero. In section 4 we consider low energy field theory to find desired couplings

and then using these couplings we produce first massless pole for p = n case.

To obtain the infinite massless poles for this case, one needs to know the higher deriva-

tive couplings of four gauge fields. To this aim, using T-duality transformation in section 5

we find higher derivative couplings of four gauge fields up to on-shell ambiguity. Then

using these couplings in field theory we will show that the massless poles of this S-matrix

element are exactly reproduced to all orders of α′. Finally in section 5.2 we obtain all

infinite massless poles in field theory for p = n+2 case and find a consistent result between

string theory and field theory amplitudes. In addition we generate contact terms of this

amplitude in leading order and next to the leading order.

Before continuing our calculations, let us explain the conventions. Our index conven-

tions are that lowercase Greek indices take values in the whole ten-dimensional spacetime,

e.g., µ, ν = 0, 1,..., 9; early Latin indices take values in the world-volume, e.g., a, b, c = 0,

1,..., p; and middle Latin indices take values in the transverse space, e.g., i, j = p + 1,...,9.

Thus, for example, Gµν indicates the entire spacetime metric, while Gab and Gij indicate

metric components for directions parallel and orthogonal to the Dp-branes, respectively.
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2 The four point superstring scattering (CAAA)

In this section, using the conformal field theory technique we evaluate the string scattering

amplitude to find all couplings of one closed string RR field to three gauge fields on the

world-volume of a single BPS Dp-brane with flat empty space background. To calculate a

S-matrix element, one firstly needs to choose the picture of the vertex operators. The sum

of the superghost charges must be -2 for disk level amplitudes.

A great deal of effort for the scattering amplitudes at tree level has been made [40–44].

The S-matrix element of one closed string RR field and three gauge fields is given by the

following correlation function

ACAAA ∼

∫

dx1dx2dx3dzdz̄ 〈V
(0)
A (x1)V

(0)
A (x2)V

(−1)
A (x3)V

(

−
1
2
,− 1

2

)

RR (z, z̄)〉, (2.1)

where the closed string vertex operator inserted at the middle and open string vertex

operators at the boundary of the disk world-sheet. The vertex operators in (2.1) are given

as1

V
(0)
A (x) = ξa

(

∂Xa(x) + 2ik·ψψa(x)

)

e2ik.X(x),

V
(−1)
A (y) = ξ.ψ(y)e−φ(y)e2ik·X(y),

V

(

−
1
2
,− 1

2

)

RR (z, z̄) = (P−H/ (n)Mp)
αβe−φ(z)/2Sα(z)eip·X(z)e−φ(z̄)/2Sβ(z̄)eip·D·X(z̄),

where k is the momentum of gauge field which satisfies the on-shell condition k2 = 0 and

k.ξ = 0. The projector in the RR vertex operator is P− = 1
2(1 − γ11) and

H/ (n) =
an

n!
Hµ1...µn

γµ1 . . . γµn ,

where n = 2, 4 for type IIA and n = 1, 3, 5 for type IIB. an = i for IIA and an = 1

for IIB theory. The spinorial indices are raised with the charge conjugation matrix, i.e.,

(P−H/ (n))
αβ = Cαδ(P−H/ (n))δ

β (for more conventions and notations see appendix B of [45]).

The RR bosons are massless so p2 = 0. The world-sheet fields have been extended to the

entire complex plane. That is, we have replaced

X̃µ(z̄) → Dµ
νX

ν(z̄) , ψ̃µ(z̄) → Dµ
νψ

ν(z̄) , φ̃(z̄) → φ(z̄) , and S̃α(z̄) →Mα
βSβ(z̄) ,

where

D =

(

−19−p 0

0 1p+1

)

, and Mp =

{

±i
(p+1)!γ

a1γa2 . . . γap+1ǫa1...ap+1 for p even
±1

(p+1)!γ
a1γa2 . . . γap+1γ11ǫa1...ap+1 for p odd

Using this doubling trick, one can find the standard holomorphic correlators for the world-

sheet fields Xµ, ψµ, φ as the following

〈Xµ(z)Xν(w)〉 = −ηµν log(z − w),

〈ψµ(z)ψν(w)〉 = −ηµν(z − w)−1 ,

〈φ(z)φ(w)〉 = − log(z − w) . (2.2)

1In string theory, we set α
′ = 2.
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Introducing x4 ≡ z = x+ iy and x5 ≡ z̄ = x− iy, the amplitude reduces to the following

correlators for 123 ordering

ACAAA ∼

∫

dx1dx2dx3dx4dx5 (P−H/ (n)Mp)
αβξ1aξ2bξ3cx

−1/4
45 (x34x35)

−1/2

×(I1 + I2 + I3 + I4)Tr (λ1λ2λ3), (2.3)

where xij = xi − xj , with the Wick theorem one can find the correlators as

I1 = <: ∂Xa(x1)e
2ik1.X(x1) : ∂Xb(x2)e

2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : ψc(x3) :>,

I2 = <: ∂Xa(x1)e
2ik1.X(x1) : e2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : 2ik2.ψψ
b(x2) : ψc(x3) :>,

I3 = <: e2ik1.X(x1) : ∂Xb(x2)e
2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : 2ik1.ψψ
a(x1) : ψc(x3) :>,

I4 = <: e2ik1.X(x1) : e2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : 2ik1·ψψ
a(x1) : 2ik2·ψψ

b(x2) : ψc(x3) :>.

Using the first correlator, it is not difficult to calculate the correlators of X. We use the

Wick-like rule [46] and [47] to find the correlation function involving an arbitrary number

of world-sheet fermions (ψs) and two spin operators (SS). One can generalize the Wick-

like rule to find the correlation function of two spin operators and an arbitrary number of

currents [43]. The only important point in using the Wick-like rule for currents is that one

must not consider the Wick-like contraction for the two ψs in one current. Taking this into

account we can obtain the correlation function between two spin operators, one current

and one world-sheet fermion as follows

Icbd
5 = <: Sα(x4) : Sβ(x5) : ψdψb(x2) : ψc(x3) :>

=

{

(ΓcbdC−1)αβ +
2Re[x24x35]

x23x45

(

ηdc(γbC−1)αβ − ηbc(γdC−1)αβ

)}

×2−3/2x
1/4
45 (x24x25)

−1(x34x35)
−1/2. (2.4)

The calculation of the correlation function between two spin operators, two currents and

one world-sheet fermion is more complicated, but using this generalization it is simply

given by

Icbeaf
6 = <: Sα(x4) : Sβ(x5) : ψfψa(x1) : ψeψb(x2) : ψc(x3) :>

=

{

(ΓcbeafC−1)αβ + 2r1
Re[x14x25]

x12x45
+ 2r2

Re[x14x35]

x13x45
+ 2r3

Re[x24x35]

x23x45
+ 4r4

×

(

Re[x14x25]

x12x45

)2

+ 4r5

(

Re[x14x25]

x12x45
×
Re[x14x35]

x13x45

)

+ 4r6

(

Re[x14x25]

x12x45

×
Re[x24x35]

x23x45

)}

2−5/2x
5/4
45 (x14x15x24x25)

−1(x34x35)
−1/2, (2.5)

– 5 –
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where

r1 =

(

ηfe(ΓcbaC−1)αβ − ηfb(ΓceaC−1)αβ − ηae(ΓcbfC−1)αβ + ηab(ΓcefC−1)αβ

)

,

r2 =

(

ηfc(ΓbeaC−1)αβ − ηac(ΓbefC−1)αβ

)

,

r3 =

(

ηec(ΓbafC−1)αβ − ηbc(ΓeafC−1)αβ

)

,

r4 =

(

(−ηfeηab + ηfbηae)(γcC−1)αβ

)

,

r5 =

(

(ηfeηac − ηfcηae)(γbC−1)αβ + (−ηfbηac + ηfcηab)(γeC−1)αβ

)

,

r6 =

(

(−ηfeηbc + ηfbηec)(γaC−1)αβ + (ηaeηbc − ηabηec)(γfC−1)αβ

)

. (2.6)

Replacing the above spin correlators in (2.3) and performing the correlators over X, one

finds:

ACAAA∼

∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβIξ1aξ2bξ3cx

−1/4
45 (x34x35)

−1/2

×

(

Ic
7(−η

abx−2
12 + aa

1a
b
2) + aa

1a
cb
3 + ab

2a
ca
4 − 4k1fk2eI

cbeaf
6

)

Tr (λ1λ2λ3), (2.7)

where Icbeaf
6 is given in (2.5) and

I = |x12|
4k1.k2|x13|

4k1.k3|x14x15|
2k1.p|x23|

4k2.k3 |x24x25|
2k2.p|x34x35|

2k3.p|x45|
p.D.p,

aa
1 = −ika

2

(

x42

x41x12
+

x52

x51x12

)

− ika
3

(

x43

x41x13
+

x53

x51x13

)

,

ab
2 = −ikb

1

(

x14

x42x12
+

x15

x52x12

)

− ikb
3

(

x43

x42x23
+

x53

x52x23

)

,

acb
3 = 2ik2dI

cbd
5 ,

aca
4 = 2ik1e2

−3/2x
1/4
45 (x14x15)

−1(x34x35)
−1/2

×

{

(ΓcaeC−1)αβ +
2Re[x14x35]

x13x45

(

ηce(γaC−1)αβ − ηac(γeC−1)αβ

)}

,

Ic
7 = <: Sα(x4) : Sβ(x5) : ψc(x3) :>= 2−1/2x

−3/4
45 (x34x35)

−1/2(γcC−1)αβ .

One can show that the integrand is invariant under SL(2, R) transformation. Gauge fixing

this symmetry by fixing the position of the open string vertex operators as

x1 = 0, x2 = 1, x3 → ∞, dx1dx2dx3 → x2
3.

one finds the following integral
∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)d, (2.8)

where d = 0, 1, 2 and a, b, c are given in terms of the Mandelstam variables,i.e.,

s = −(k1 + k3)
2, t = −(k1 + k2)

2, u = −(k2 + k3)
2.
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The region of integration is the upper half of the complex plane. For d = 0, 1 the result is

given in [48] and for d = 2 the result is given in [43]. Using those integrals one can write

the amplitude (2.7) as

AAAAC = A1 + A2 + A3, (2.9)

where

A1 ∼ 21/2ξ1aξ2bξ3dk1fk2eTr (P−H/ (n)MpΓ
dbeaf )(t+ s+ u)L1,

A2 ∼ 2−1/2Tr (P−H/ (n)MpΓ
dba)

{

− tL2ξ1aξ2bξ3d +

[

L2(−2k1.ξ2k2bξ1aξ3d − 2k2.ξ1k1aξ2bξ3d

−2k2.ξ1k2aξ2bξ3d + 2k1.ξ2k1aξ1bξ3d + 2ξ1.ξ2k1ak2bξ3d)

]

−

[

3 ↔ 1

]

−

[

3 ↔ 2

]}

,

A3 ∼ 2−1/2L1

{[

Tr (P−H/ (n)Mpξ3.γ)(−2tk3.ξ1k3.ξ2 + 2uk3.ξ1k1.ξ2 + 2sk2.ξ1k3.ξ2

+usξ1.ξ2)

]

+

[

3 ↔ 2

]

+

[

3 ↔ 1

]

+

([

Tr (P−H/ (n)Mpk2.γ)(−2tk3.ξ1ξ2.ξ3

+2uk1.ξ2ξ1.ξ3 + 2sk2.ξ1ξ3.ξ2 − 2uξ1.ξ2k1.ξ3)

]

+

[

2 ↔ 1

])}

. (2.10)

where the functions L1, L2 are the following

L1 = (2)−2(t+s+u)π
Γ
(

− u+ 1
2

)

Γ
(

− s+ 1
2

)

Γ
(

− t+ 1
2

)

Γ(−t− s− u)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
,

L2 = (2)−2(t+s+u)π
Γ(−u+ 1)Γ(−s+ 1)Γ(−t)Γ

(

− t− s− u+ 1
2

)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s − u+ 1)
.

Since H/ (n),Mp,Γ
dbeaf and Γdea are totally antisymmetric combinations of the Gamma

matrices, one can then understand that the amplitude is non zero for p = n+ 4, p = n+ 2

and p = n. From the poles of the gamma functions, one can easily see that the scattering

amplitude has infinite massless poles and infinite number of massive poles. To compare

this with the field theory, which has massless fields, one must expand the amplitude such

that the massless poles of the field theory survive and all other poles vanish in the form

of contact terms. In the next section we use the low energy limit expansion by sending all

Mandelstam variables to zero.

3 Momentum expansion

We want to examine the limit of α′ → 0 of the above string amplitude. Using the momen-

tum conservation along the world volume of brane, ka
1 + ka

2 + ka
3 + pa = 0, one finds the

Mandelstam variables satisfy the following constraint

s+ t+ u = −pap
a. (3.1)

It has been argued in [49], generally speaking that the momentum expansion of a S-matrix

element should be around (ki +kj)
2 → 0 and/or ki·kj → 0. The case (ki +kj)

2 → 0 is when

– 7 –
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there is a massless pole in the (ki + kj)
2-channel. Notice that the amplitude (2.1) must

have only massless poles in the (k1 + k2)
2, (k1 + k3)

2 and (k2 + k3)
2-channels, so correct

momentum expansion at the low energy limit for t-channel must be around

(k1 + k2)
2 → 0, k1.k3 → 0, k2.k3 → 0.

Also the correct momentum expansion for s,u-channels respectively are

(k1 + k3)
2 → 0, k1.k2 → 0, k2.k3 → 0,

(k2 + k3)
2 → 0, k1.k2 → 0, k1.k3 → 0,

Using the on-shell relations k2
1 = k2

2 = k2
3 = 0 one can rewrite them in terms of the

Mandelstam variables as

s→ 0, t→ 0, u→ 0. (3.2)

Including the constraint (3.1), one should realize that pap
a → 0 which is possible for

D-branes. Therefore the S-matrix element can be evaluated for BPS branes.

Expansion of the functions L1, L2 around the above point is

L1 = −π5/2

(

∞
∑

n=0

cn(s + t+ u)n +

∑

∞

n,m=0 cn,m[snum + smun]

(t+ s+ u)

+

∞
∑

p,n,m=0

fp,n,m(s+ t+ u)p[(s+ u)n(su)m]

)

,

L2 = −π3/2

(

1

t

∞
∑

n=−1

bn(u+ s)n+1 +
∞
∑

p,n,m=0

ep,n,mt
p(su)n(s+ u)m

)

. (3.3)

where some of the coefficients bn, ep,n,m, cn, cn,m and fp,n,m are

b−1 = 1, b0 = 0, b1 =
1

6
π2, b2 = 2ζ(3), c0 = 0, c1 = −

π2

6
,

e2,0,0 = e0,1,0 = 2ζ(3), e1,0,0 =
1

6
π2, e1,0,2 =

19

60
π4, e1,0,1 = e0,0,2 = 6ζ(3),

e0,0,1 =
1

3
π2, e3,0,0 =

19

360
π4, e0,0,3 = e2,0,1 =

19

90
π4, e1,1,0 = e0,1,1 =

1

30
π4, (3.4)

c2 = −2ξ(3), c1,1 =
π2

6
, c0,0 =

1

2
, c3,1 = c1,3 =

2

15
π4, c2,2 =

1

5
π4,

c1,0 = c0,1 = 0, c3,0 = c0,3 = 0 , c2,0 = c0,2 =
π2

6
, c1,2 = c2,1 = −4ξ(3),

f0,1,0 =
π2

3
, f0,2,0 = −f1,1,0 = −6ξ(3), f0,0,1 = −2ξ(3), c4,0 = c0,4 =

1

15
π4.

Note that the coefficients bn are exactly the coefficients that appear in the momentum

expansion of the S-matrix element of one RR, two gauge fields and one tachyon vertex op-

erator [43]. Meanwhile cn, cn,m, fp,n,m are different from those coefficients which appeared

in [43]. The function of L1 has infinite massless poles in the (t+ s+u)-channel and L2 has

infinite massless poles in the t-channel. These poles must be reproduced in field theory by

appropriate couplings. Let us study each case separately.
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4 Low energy field theory

We are interested in the part of effective field theory of D-branes which includes only

gauge fields. It should be possible to extract the necessary terms from the covariant

Born-Infeld action constructed as the effective D-brane action in (1.5) . The Born-Infeld

action is an action for all orders of α′ (see for more details [50–56]). The low energy non-

abelian extension of the action was proposed to be the symmetrized trace of non-abelian

generalization of Born-Infeld action (with flat background in the bulk) [57]. There, it was

shown that defining non abelian Born-Infeld action with this trace produced the known

results for the scattering of gauge fields up to fourth order in the field strengths [58].

However, there are some reasons which indicate the symmetrized trace prescription does

not work for F 6 [59]. Then, it was proved that the symmetrized trace requires corrections

at sixth order [60, 61]. Using noncommutative field theory some efforts for the form of BI

action were done [62–64].

The non-abelian field strength and covariant derivative of the gauge field are defined

respectively as

F ab = ∂aAb − ∂bAa − i[Aa, Ab], DaFbc = ∂aFbc − i[Aa, Fbc].

where Aa = Aα
aΛα and Λα are the hermitian matrices. Our conventions for Λα are

∑

α

Λα
ijΛ

α
kl = δikδjl , Tr (ΛαΛβ)=δαβ .

Using the following expression, one can expand the square root in the non-abelian ac-

tion (1.5) to produce various interacting terms [65] :

√

− det(M0 +M) =
√

− det(M0)

(

1 +
1

2
Tr(M−1

0 M) −
1

4
Tr(M−1

0 MM−1
0 M)

+
1

6
Tr(M−1

0 MM−1
0 MM−1

0 M) −
1

8
Tr(M−1

0 MM−1
0 MM−1

0 MM−1
0 M)

+
1

8
(Tr(M−1

0 M))2 −
1

8
(Tr(M−1

0 M))3 +
1

32
(Tr(M−1

0 MM−1
0 M))2

+ · · ·

)

. (4.1)

In (1.5), M0 and M are

M0 = ηab,

M = 2πα′Fab.

The terms of the above expansion which have contribution to the S-matrix element (2.1)

are in the following

L = −Tp(πα
′)Tr

(

−(πα′)FabF
ba
)

(4.2)

−Tp(2πα
′)4STr

(

−
1

8
FbdF

dfFfhF
hb +

1

32
(FabF

ba)2
)

.
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Note that after averaging all possible permutations of the above terms in the second line

(4.2), one must take overall trace over the group theory indices. The couplings in the

second line have been confirmed [66]. We want to obtain the higher derivative couplings

of the four gauge fields and then show that these terms reproduce infinite massless poles

in the S-matrix.

4.1 p = n+ 4 case

This is the simplest case to consider. Only A1 in (2.10) is non-zero. One can calculate the

trace of A1 as follows

Tr

(

P−H/ (n)MpΓ
dbeaf

)

= ±
32

2n!
ǫdbeafa0···ap−5Ha0···ap−5 ,

We are going to compare string theory S-matrix elements with field theory including their

coefficients, however we are not interested in fixing the overall sign of the amplitudes.

Taking into account the above trace, the string amplitude becomes

ACAAA =±
32

(p− 4)!
µpπ

1/2Tr (λ1λ2λ3)ξ1aξ2bξ3dk1fk2eǫ
dbeafa0···ap−5Ha0···ap−5(s+ t+ u)L1,

(4.3)

where we normalized the amplitude by (µp2
1/2π1/2). The above amplitude is antisymmetric

upon interchanging the gauge fields. So the whole amplitude is zero for an abelian gauge

group. The amplitude also satisfies the Ward identity, i.e., it vanishes under replacing each

of ξi → ki. Since (t+ s+ u)L1 has no tachyon/massless pole, then the amplitude has only

contact terms. The leading contact term is reproduced by the following coupling

1

3!
µp(2πα

′)3Tr (Cp−5 ∧ F ∧ F ∧ F ). (4.4)

The non-leading order terms should correspond to the higher derivative extension of the

coupling.

4.2 p = n case

The next simple case is p = n. Only A3 in (2.10) is non-zero for this case. The calculation

of the trace in this part of the amplitude is

Tr

(

H/ (n)Mpγ
a

)

= ±
32

n!
ǫa0···ap−1aHa0···ap−1 ,

Substituting this trace in A3, one finds

ACAAA = ±
32

2p!
µpπ

1/2L1Tr (λ1λ2λ3)ǫ
a0···ap−1aHa0···ap−1

{[

ξ3a(−2tk3.ξ1k3.ξ2 + 2uk3.ξ1

×k1.ξ2 + 2sk2.ξ1k3.ξ2 + usξ1.ξ2)

]

+

[

3 ↔ 2

]

+

[

3 ↔ 1

]

+

([

k2a(−2tk3.ξ1ξ2.ξ3

+2uk1.ξ2ξ1.ξ3 + 2sk2.ξ1ξ3.ξ2 − 2uξ1.ξ2k1.ξ3)

]

+

[

2 ↔ 1

])}

. (4.5)
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Cp−1

Figure 1. The Feynman diagram corresponding to the amplitudes (4.5).

A check of our calculations is that the above amplitude satisfies the Ward identity asso-

ciated with the gauge invariance of the open string states. The amplitude is symmetric

under interchanging 1 ↔ 2. So the amplitude is non-zero even for the abelian case. All

terms in (4.5) have infinite massless poles in the (s + t + u)-channel and infinite contact

terms. In the next section, firstly we want to reproduce the first massless pole using the

symmetric trace prescription of BI action. Then we find higher derivative couplings of four

gauge fields in order to show that massless poles can be produced to all orders of α′ by

WZ coupling Cp ∧ F and by the higher derivative couplings of four gauge fields.

4.3 First massless pole for p = n case

The terms in the second line of (4.2) give four gauge field couplings. In order to reproduce

the first massless pole from the couplings (4.2) we should consider figure 1 as the Feynman

diagram for p = n case. Since the propagator is abelian, we must calculate three possible

permutations to obtain the desired 123 ordering. Writing symmetric traces in terms of

ordinary traces (apart from overall factor), one can write the two last terms in (4.2) as

(L0,0
5 + L0,0

6 + L0,0
7 ) which are the following :

L0,0
5 = −

1

4π2
Tr

(

a0,0(FbdF
dfFfhF

hb) + b0,0(FbdFfhF
dfF hb)

)

,

L0,0
6 = −

1

4π2
Tr

(

a0,0(FbdF
dfF hbFfh) + b0,0(FbdF

hbF dfFfh)

)

,

L0,0
7 =

1

8π2
Tr

(

a0,0(FabF
abFcdF

cd) + b0,0(FabF
cdF abFcd)

)

. (4.6)

where a0,0 = −π2

6 , b0,0 = −π2

12 .

The massless poles of the amplitude (4.5) are given by the following amplitude

A = V a
α (Cp−1, A)Gab

αβ(A)V b
β (A,A1, A2, A3), (4.7)

– 11 –



J
H
E
P
0
5
(
2
0
1
0
)
0
8
0

where the gauge field propagator and the vertex V a
α (Cp−1, A) are given as

Gab
αβ(A) =

iδαβδ
ab

(2πα′)2Tp(s+ t+ u)
,

V a
α (Cp−1, A) = i(2πα′)µp

1

p!
ǫa0···ap−1aHa0···ap−1Tr (Λα). (4.8)

where V a
α (Cp−1, A) has been found in [42]. In the above vertex Tr (Λα) is non-zero for the

abelian matrix Λα. The vertex V b
β (A,A1, A2, A3) can be obtained from the four gauge field

couplings of (4.6) as follows

I8 = V b
β (A,A1, A2, A3) = (2πα′)4Tp

1

4
Tr (λ1λ2λ3Λβ)

{

ξb
3

[

2tk3.ξ1k3.ξ2 − 2uk3.ξ1k1.ξ2

−2sk2.ξ1k3.ξ2 − usξ1.ξ2

]

+

[

3 ↔ 2

]

+

[

3 ↔ 1

]

+

(

kb
2

[

+ 2tk3.ξ1ξ2.ξ3 − 2uk1.ξ2ξ1.ξ3

+2uk1.ξ3ξ1.ξ2 − 2sξ2.ξ3k2.ξ1

]

+

[

2 ↔ 1

])}

, (4.9)

where k1, k2, k3 are the momenta of on-shell gauge fields. Replacing the above vertex in (4.7)

we find exactly the first massless pole of the equation of (4.5). In order to obtain all infinite

massless poles of the amplitude for the p = n case we should find higher derivative couplings

of four gauge fields.

5 Four gauge field couplings

The S-matrix element of all four point massless vertex operators in superstring theory was

calculated in standard books [67, 68]. For two important reasons one can find the higher

derivative couplings of four gauge fields from higher derivative couplings of four scalar

fields [38] by using T-duality transformation.

The first reason is that Mandelstam Variables for both four gauge fields amplitude

and four massless scalar fields amplitude satisfy the constraint of s + t + u = 0. Also the

massless poles of the Feynman amplitude resulting from the non abelian kinetic term of

the scalars and gauge fields are reproduced at the low energy limit by sending s, t, u → 0.

The second reason is that, external states in both of them satisfy the on-shell condition

k2
i = 0 and physical state condition k.ξ = 0 (in fact, the behavior of massless transverse

scalars is similar to world volume gauge fields). Also both of them transform in the adjoint

representation of U(N) group.

One may expect that the higher derivative couplings of four gauge fields should be

similar to the higher derivative couplings of four scalar fields. The only difference is related

to their polarization. Gauge fields’ polarization only has components in the world volume

direction while scalar fields’ polarization has transverse components on the D-brane ,i.e.,

the physical state condition for gauge field is k1.ξ1 = k2.ξ2 = · · · = kn.ξn = 0 while for

scalar fields it satisfies k1.ξ1 = k1.ξ2 = · · · = ki.ξj = 0 where i, j = 1, 2, ...n.

On the other hand the S-matrix element of the scalar field vertex operators can be read

from the S-matrix element of gauge field vertex operators by restricting the polarization
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of the gauge fields to transverse directions and the momentum of the gauge fields to the

world-volume directions. To find four gauge field couplings to all orders of α′, we follow

the steps mentioned in [38]. The massless poles in (4.5) are reproduced by the non-abelian

kinetic terms of the gauge field and the contact terms with coefficients a0,0 and b0,0 are

also reproduced (apart from an over all factor) by the following terms

− TpSTr

(

−
1

8
FbdF

dfFfhF
hb +

1

32
(FabF

ba)2
)

. (5.1)

Meanwhile for the scalar field they are reproduced by

−TpSTr

(

−
1

4
Daφ

iDbφiD
bφjDaφj +

1

8
(Daφ

iDaφi)
2

)

. (5.2)

Note that the differences between (5.1) and (5.2) are the coefficients and indices. Therefore

using T-duality transformation not only should one substitute the covariant derivative of

the scalar field Dφ into the field strength of the gauge field F , but also replace transverse

indices with world volume indices to find higher derivative couplings of four gauge fields

from higher derivative couplings of four scalar fields (the equation (35) of [38]). Performing

symmetric traces in terms of ordinary traces one can write (5.1) as (4.6). Now one can

extend it to the higher derivative terms as

(2πα′)4
1

8π2
Tp

(

α′
)n+m

∞
∑

m,n=0

(Lnm
5 + Lnm

6 + Lnm
7 ), (5.3)

with

Lnm
5 = −Tr

(

an,mDnm[FbdF
dfFfhF

hb] + bn,mD′
nm[FbdFfhF

dfF hb] + h.c.
)

,

Lnm
6 = −Tr

(

an,mDnm[FbdF
dfF hbFfh] + bn,mD′

nm[FbdF
hbF dfFfh] + h.c.

)

,

Lnm
7 =

1

2
Tr
(

an,mDnm[FabF
abFcdF

cd] + bn,mD′
nm[FabF

cdF abFcd] + h.c
)

,

where the higher derivative operators Dnm and D′
nm are defined [38] as

Dnm(EFGH) ≡ Db1 · · ·Dbm
Da1 · · ·Dan

EFDa1 · · ·DanGDb1 · · ·DbmH,

D′
nm(EFGH) ≡ Db1 · · ·Dbm

Da1 · · ·Dan
EDa1 · · ·DanFGDb1 · · ·DbmH.

Of course the above couplings are exact up to total derivative terms and terms like

∂a∂
aFFFF which are zero on-shell. Also these terms have no effect on the massless

poles of S-matrix elements because by canceling k2 with the massless propagator one finds

a contact term. These are the higher derivative extensions of four gauge field couplings of

the action (1.5).

5.1 Infinite massless poles for p = n case

Here we would like to check that the infinite four gauge field couplings (5.3) produce infinite

massless poles of the string theory S-matrix element (4.5) which are in the (s+t+u)-channel.
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In fact they can be reproduced by WZ coupling Cp ∧ F and by the higher derivative four

gauge field couplings that have been found in (5.3). For this aim, consider the amplitude

of the decay of one R-R field to three gauge fields in the world-volume theory of the BPS

branes which is given by the Feynman amplitude (4.7), where the gauge field propagator

and the vertex V a
α (Cp−1, A) are in (4.8). According to the fact that the off-shell gauge field

must be abelian, one finds the higher derivative vertex V b
β (A,A1, A2, A3) from the higher

derivative couplings in (5.3) to be

I8
2π2

(α′)n+m(an,m + bn,m)

(

(k3 ·k1)
n(k1 ·k)

m + (k1 ·k)
m(k2 ·k)

n + (k1 ·k)
n(k1 ·k3)

m

+(k1 ·k3)
m(k3 ·k2)

n + (k3 ·k1)
n(k2 ·k3)

m + (k3 ·k2)
m(k2 ·k)

n + (k1 ·k)
n(k2 ·k)

m

+(k3 ·k2)
n(k2 ·k)

m

)

, (5.4)

where I8 is in (4.9) and k is the momentum of the off-shell gauge field. Note that we

must consider all 12 possible cyclic permutations to obtain the desired 123 ordering of the

amplitude. Some of the coefficients an,m and bn,m are [38]

a0,0 = −
π2

6
, b0,0 = −

π2

12
, a1,0 = 2ζ(3), a0,1 = 0, b0,1 = −ζ(3), a1,1 = a0,2 = −7π4/90,

a2,2 = (−83π6 − 7560ζ(3)2)/945, b2,2 = −(23π6 − 15120ζ(3)2)/1890, a1,3 = −62π6/945,

a2,0 = −4π4/90, b1,1 = −π4/180, b0,2 = −π4/45, a0,4 = −31π6/945, a4,0 = −16π6/945,

a1,2 = a2,1 = 8ζ(5) + 4π2ζ(3)/3, a0,3 = 0, a3,0 = 8ζ(5), b1,3 = −(12π6 − 7560ζ(3)2)/1890,

a3,1 = (−52π6 − 7560ζ(3)2)/945, b0,3 = −4ζ(5), b1,2 = −8ζ(5) + 2π2ζ(3)/3,

b0,4 = −16π6/1890. (5.5)

where bn,m is symmetric.

Now one can write k1·k = k2.k3−(k2)/2 and k2·k = k1.k3−(k2)/2. The terms k2 in the

vertex (5.4) will be canceled with the k2 in the denominator of the gauge field propagator

producing a bunch of contact terms of one RR and three gauge fields which we are not

interested in considering. Neglecting them, one finds the following infinite massless poles

−32πµp
ǫa0···ap−1aHa0···ap−1

p!(s + t+ u)
Tr (λ1λ2λ3)

∞
∑

n,m=0

(

(an,m + bn,m)[smun+snum]

{[

ξ3a(−2tk3.ξ1

×k3.ξ2 + 2uk3.ξ1k1.ξ2 + 2sk2.ξ1k3.ξ2 + usξ1.ξ2)

]

+

[

3↔2

]

+

[

3↔1

]

+

([

k2a(−2tk3.ξ1

×ξ2.ξ3 + 2uk1.ξ2ξ1.ξ3 + 2sk2.ξ1ξ3.ξ2 − 2uξ1.ξ2k1.ξ3)

]

+

[

2 ↔ 1

])}

. (5.6)

As a check of our calculations let us compare the above amplitude with the massless poles

in (4.5) for some values of n,m. For n = m = 0, the amplitude (5.6) has the following

numerical factor

− 8(a0,0 + b0,0) = −8

(

−π2

6
+

−π2

12

)

= 2π2

– 14 –



J
H
E
P
0
5
(
2
0
1
0
)
0
8
0

A similar term in (4.5) has the numerical factor (4π2c0,0) which is equal to the above

number. At the order of α′, the amplitude (5.6) has the following numerical factor

− 4(a1,0 + a0,1 + b1,0 + b0,1)(s + u) = 0

A similar term in (4.5) is proportional to 2π2(c1,0 + c0,1)(s+u) which is zero. At the order

of (α′)2, the amplitude (5.6) has the following factor

−8(a1,1 + b1,1)su− 4(a0,2 + a2,0 + b0,2 + b2,0)[s
2 + u2] =

π4

3
(2su) +

2π4

3
(s2 + u2)

A similar term in (4.5) has the numerical factor 2π2[c1,1(2su)+(c2,0+c0,2)(s
2+u2)] which is

equal to the above factor using the coefficients in (3.4). At the order of α′3, this amplitude

has the following factor

−4(a3,0 + a0,3 + b0,3 + b3,0)[s
3 + u3] − 4(a1,2 + a2,1 + b1,2 + b2,1)[su(s+ u)]

= −16π2ξ(3)su(s + u)

which is equal to the corresponding term in (4.5), i.e., 2π2[(c0,3 + c3,0)[s
3 + u3] + (c2,1 +

c1,2)su(s+ u)]. At the order of (α′)4, the amplitude (5.6) has the following factor

−4(a4,0 + a0,4 + b0,4 + b4,0)(s
4 + u4) − 4(a3,1 + a1,3 + b3,1 + b1,3)[su(s

2 + u2)]

−8(a2,2 + b2,2)s
2u2 =

4π6

15
(s4 + u4 + 2(s3u+ u3s) + 3s2u2)

A similar term in (4.5) has the numerical factor 2π2[(c4,0 +c0,4)(s
4 +u4)+(c1,3+c3,1)(s

3u+

u3s)+ 2c2,2s
2u2] which is equal to the above factor using the coefficients in (3.4). We have

reproduced the known results for terms at O(α′4).2 A similar comparison can be done for

all orders of α′. Hence, the field theory amplitude (5.6) reproduces exactly the infinite

massless poles of the string theory amplitude (4.5). This shows that in addition to higher

derivative couplings of four gauge fields being exact up to zero on-shell, they are also

consistent with the momentum expansion of the amplitude CAAA.

5.2 Infinite massless poles for p = n+ 2 case

The last case is p = n + 2. Only A2 in (2.10) is non-zero for this case. The trace is

calculated as follows

Tr

(

H/ (n)MpΓ
dba

)

= ±
32

n!
ǫa0···ap−3dbaHa0···ap−3 ,

2Our results up to O(α′4) are consistent with those terms which found in [69–71] up to on-shell ambiguity

and total derivative terms.
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(a)

A1

A2

A3

Cp−3

(b)

Figure 2. The Feynman diagrams (a) and (b) corresponding to the massless pole of the ampli-

tude (5.7) and the couplings (5.9).

Replacing (3.3) and the above trace in the second part of the amplitude (2.10), one finds

the electric part of the amplitude for p = n+ 2 case is given by

ACAAA = ∓
32

2(p− 2)!
µpπ

2Tr (λ1λ2λ3)ǫ
a0···ap−3deaHa0···ap−3

{

−

∞
∑

n=−1

bn(u+ s)n+1ξ3dξ2eξ1a

+

([ ∞
∑

n=−1

1

t
bn(u+ s)n+1(−2k1.ξ2k2eξ1aξ3d − 2k2.ξ1k1aξ2eξ3d − 2k2.ξ1k2aξ2eξ3d

+2k1.ξ2k1aξ1eξ3d + 2ξ1.ξ2k1ak2eξ3d)

]

−

[

3 ↔ 1

]

−

[

3 ↔ 2

])}

. (5.7)

The amplitude is antisymmetric under the interchange of the gauge fields, so the whole

amplitude is zero for the abelian gauge group. The amplitude satisfies the Ward identity

for all three gauge fields. Note that only the first term is related to the infinite contact

terms while the other terms are indeed infinite massless poles. We are going to analyze all

orders of the massless poles in this section and the leading order and next to leading order

of the contact terms in the following section.

The amplitudes in s,u and t-channels are very similar, so we analyze the amplitude

with whole details only in t-channel. Infinite massless poles in the t-channel should be

reproduced in field theory according to the Feynman diagram of figure 2(a).

Therefore the infinite massless poles are given by the Feynman amplitude

A = V a
α (Cp−3, A3, A)Gab

αβ(A)V b
β (A,A1, A2), (5.8)

where the vertices and propagator are

V a
α (Cp−3, A3, A) =

µp(2πα
′)2

(p− 2)!
ǫa0···ap−1aHa0···ap−3ξ3ap−2kap−1Tr (λ3Λα)

∞
∑

n=−1

bn(α′k3.k)
n+1,

V b
β (A,A1, A2) =−iTp(2πα

′)2Tr (λ1λ2Λβ)

[

ξb
1(k1−k).ξ2 + ξb

2(k −k2).ξ1+ξ1.ξ2(k2 −k1)
b

]

,

Gab
αβ(A) =

iδαβδ
ab

(2πα′)2Tp(t)
,
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where the propagator is derived from the standard gauge kinetic term arising in the ex-

pansion of the Born-Infeld action. Note that the vertex V b
β (A,A1, A2) is found from the

standard non abelian kinetic term of the gauge field, and also the vertex V a
α (Cp−3, A3, A)

is found from the higher derivative extension of the WZ coupling Cp−3 ∧F ∧F [49]. In the

above formula k is the momentum of the off-shell gauge field. The important point is that

the vertex V b
β (A,A1, A2) has no higher derivative correction as it arises from the kinetic

term of the gauge field. This vertex has already been found in [43]. Substituting them to

the amplitude (5.8) becomes

A = µp(2πα
′)2

1

(p− 2)!t
Tr (λ1λ2λ3)ǫ

a0···ap−1aHa0···ap−3ξ3ap−2

∞
∑

n=−1

bn

(

α′

2

)n+1

(s+ u)n+1

×

[

− 2k1.ξ2k1ap−1ξ1a − 2k1.ξ2k2ap−1ξ1a + 2k2.ξ1k1ap−1ξ2a + 2k2.ξ1k2ap−1ξ2a

−2ξ1.ξ2k2ak1ap−1

]

.

which describes exactly the same infinite massless poles of the string theory amplitude (5.7)

in t-channel.

5.3 Contact terms

After finding all infinite massless poles, we now extract the low energy contact terms of the

string amplitude for p = n + 2 case. Substituting (3.3) into (5.7), one finds the following

contact terms at leading order and next to the leading order

ACAAA = ∓
32µpπ

2

2(p− 2)!
Tr (λ1λ2λ3)ǫ

a0···ap−3deaHa0···ap−3

{

ξ3dξ2eξ1a +
π2

6
ξ3dξ2eξ1a

[

(s+ u)2

+t(t+ 2s + 2u)

]

−

([

π2

6
(t+ 2s+ 2u)(−2k1.ξ2k2eξ1aξ3d − 2k2.ξ1k1aξ2eξ3d

−2k2.ξ1k2aξ2eξ3d + 2k1.ξ2k1aξ1eξ3d + 2ξ1.ξ2k1ak2eξ3d)

]

−

[

3 ↔ 1

]

−

[

3 ↔ 2

])}

. (5.9)

The first term is reproduced by CAAA coupling of the following gauge invariant coupling

µp

2!
(2πα′)2Tr (Cp−3 ∧ F ∧ F ), (5.10)

which is given exactly by the WZ terms in (1.3) after expanding the exponential. The

other terms in (5.9) should be related to the higher derivative extension of the above

coupling. However, there are various higher derivative gauge invariant couplings which

make a contribution to the contact terms of the S-matrix element of CAAA. Comparing

them with the string theory contact terms in (5.9), one can not fix all their coefficients

uniquely. One particular set of higher derivative gauge invariant couplings that reproduces
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the contact terms in (5.9) is as follows :

µp(2πα
′)2π2

6(p − 3)!
ǫa0···ap−4abcdCa0···ap−4

[

−
1

2
DαDβFabDαDβFcd −DαFβbD

αDaD
βFcd

+3DbD
αDβFaαDβFcd −

3

2
DaD

αDβDβFbαFcd − 10DαDβDdFaαDcFbβ

−4DcFaαD
αDβDdFbβ −

3

4
DαDβDαD

βFabFcd − 6DβFaαD
αDcDdFbβ

]

. (5.11)

where DaF = ∂aF − i[Aa, F ]. Among the couplings in (5.11), only the first coupling has

non-zero on-shell CAA coupling. This coupling is obtained from the S-matrix element of

one RR and two gauge field vertex operators. This coupling has also been used in the

previous section to verify that the infinite massless poles (5.7) are reproduced by the

higher derivative couplings in field theory. All couplings in (5.11) are at (α′)4 order. The

next order terms should be at (α′)5 order, and so on. Hence, the leading order terms

of the momentum expansion of the S-matrix element (2.10) correspond to the Feynman

amplitudes resulting from BI and WZ actions and the higher order terms correspond to the

higher derivative corrections to the WZ couplings. Note that the above higher derivative

WZ couplings are valid when pap
a → 0. Hence, they can not be compared with ‘constant

RR field’ as a result of the BSFT.
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