12 research outputs found

    Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-term Plastic Synapses

    Get PDF
    Recent evidence in rodent cerebral cortex and olfactory bulb suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form unidirectional pairwise connections. The cause of these structural differences in synaptic microcircuits is unknown. We propose that these connectivity motifs emerge from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. We formulate a computational model by combining SD and STDP, which captures faithfully short- and long-term dependence on both spike times and frequency. As a proof of concept, we simulate recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical background inputs, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. This holds for heterogeneous networks including both facilitating and depressing synapses. Our study highlights the conditions under which SD-STDP might the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs. We further suggest experiments for the validation of the proposed mechanism

    Integrated biological responses of zebrafish (Danio rerio) to analyze water quality in regions under anthropogenic influence

    No full text
    This study analyzed water quality in regions around Patos lagoon (Southern Brazil) that are under anthropogenic pressure. Water samples were collected from five different sites, including one used as a source for human consumption (COR) and others known to be influenced by human activities (IP). Danio rerio Teleostei, Cyprinidae)organisms were exposed for 24 h to these water samples plus a control group.It was observed that: (1) reactive oxygen species levels were lower in COR and IP than in the control group; (2) glutamate-cysteine ligase (catalytic subunit) expression was higher in COR than in other sites;(3) exposure to all water samples affected long-term memory(LTM) when compared to control group.Thus, some water samples possess the ability to modulate the antioxidant system and to induce a decline in cognitive functions, as measured by LTM. The obtained results indicate that a combination of variables of different organization level (molecular, biochemical and behavioral) can be employed to analyze water quality in impacted regions
    corecore