1,970 research outputs found

    "Hospital utilization by Mexican migrants returning to Mexico due to health needs"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A total of 12.7 million Mexicans reside as migrants in the United States, of whom only 45% have health insurance in this country while access to health insurance by migrants in Mexico is fraught with difficulties. Health insurance has been shown to impact the use of health care in both countries. This paper quantifies hospitalizations by migrants who return from the US seeking medical care in public and private hospitals in the US-Mexico border area and in communities of origin. The proportion of bed utilization and the proportion of hospitalizations in Mexico out of the total expected by migrants in the US were estimated.</p> <p>Methods</p> <p>The universe included 48 Ministry of Health and 47 private hospitals serving municipalities of high or very high migration in Mexico, where 17% of remittance-receiving households are located, as well as 15 public and 159 private hospitals in 10 Mexican cities along the border with the US. Hospitals were sampled through various methods to include 27% of beds. Patients and staff were interviewed and data triangulated to quantify migrants that returned to Mexico seeking medical care. Official hospital discharge statistics and secondary data from migration databases and published statistics were analyzed to identify bed occupancy, general migrant hospitalization rates and the size of the migrant population that maintains close relationships with households in communities of origin.</p> <p>Results</p> <p>Up to 1609 migrants were admitted to public hospitals (76.6%) and 492 to private hospitals (23.4%) serving municipalities of high and very high migration intensity in 2008. Up to 0.90% of public hospital capacity was used. In the border area up to 908 and 2416 migrants were admitted to public (27.3%) and private (72.7%) hospitals, respectively. Up to 1.18% of public hospital capacity was used. Between 2.4% and 20.4% of the expected hospitalization needs of migrants with dependent households are satisfied through these services. The most common diagnostic categories mentioned across hospitals were traumatisms, complications of diabetes and elective surgery, in that order. Private hospitals mention elective surgeries as the main diagnostic category followed by complications of diabetes.</p> <p>Conclusions</p> <p>Hospitals in communities of origin in Mexico are devoting few resources to respond to hospitalization needs of migrants in the US. Currently no hospital programs exist to stimulate migrant demand or to cater to their specific needs. Registering migratory history in clinical and administrative records can be readily implemented. Developing bi-national referral networks and insuring migrants in the US within current Mexican federal programs could greatly increase migrant access to hospitals.</p

    A Simple Kinetic Model Describes the Processivity of Myosin-V

    Get PDF
    Myosin-V is a motor protein responsible for organelle and vesicle transport in cells. Recent single-molecule experiments have shown that it is an efficient processive motor that walks along actin filaments taking steps of mean size close to 36 nm. A theoretical study of myosin-V motility is presented following an approach used successfully to analyze the dynamics of conventional kinesin but also taking some account of step-size variations. Much of the present experimental data for myosin-V can be well described by a two-state chemical kinetic model with three load-dependent rates. In addition, the analysis predicts the variation of the mean velocity and of the randomness -- a quantitative measure of the stochastic deviations from uniform, constant-speed motion -- with ATP concentration under both resisting and assisting loads, and indicates a {\it sub}step of size d0d_{0} \simeq 13-14 nm (from the ATP-binding site) that appears to accord with independent observations.Comment: 20 pages, 7 figures, to be published in Biophys. J. in 200

    Faculty Showcase Concert

    Get PDF
    Center for the Performing Arts Thursday Evening November 9, 2006 8:00p.m

    Amenability, locally finite spaces, and bi-lipschitz embeddings

    Full text link
    We define the isoperimetric constant for any locally finite metric space and we study the property of having isoperimetric constant equal to zero. This property, called Small Neighborhood property, clearly extends amenability to any locally finite space. Therefore, we start making a comparison between this property and other notions of amenability for locally finite metric spaces that have been proposed by Gromov, Lafontaine and Pansu, by Ceccherini-Silberstein, Grigorchuk and de la Harpe and by Block and Weinberger. We discuss possible applications of the property SN in the study of embedding a metric space into another one. In particular, we propose three results: we prove that a certain class of metric graphs that are isometrically embeddable into Hilbert spaces must have the property SN. We also show, by a simple example, that this result is not true replacing property SN with amenability. As a second result, we prove that \emph{many} spaces with \emph{uniform bounded geometry} having a bi-lipschitz embedding into Euclidean spaces must have the property SN. Finally, we prove a Bourgain-like theorem for metric trees: a metric tree with uniform bounded geometry and without property SN does not have bi-lipschitz embeddings into finite-dimensional Hilbert spaces.Comment: 15 pages. To appear in Expositiones Mathematica

    Quantum anti-Zeno effect without wave function reduction

    Full text link
    We study the measurement-induced enhancement of the spontaneous decay (called quantum anti-Zeno effect) for a two-level subsystem, where measurements are treated as couplings between the excited state and an auxiliary state rather than the von Neumann's wave function reduction. The photon radiated in a fast decay of the atom, from the auxiliary state to the excited state, triggers a quasi-measurement, as opposed to a projection measurement. Our use of the term "quasi-measurement" refers to a "coupling-based measurement". Such frequent quasi-measurements result in an exponential decay of the survival probability of atomic initial state with a photon emission following each quasi-measurement. Our calculations show that the effective decay rate is of the same form as the one based on projection measurements. What is more important, the survival probability of the atomic initial state which is obtained by tracing over all the photon states is equivalent to the survival probability of the atomic initial state with a photon emission following each quasi-measurement to the order under consideration. That is because the contributions from those states with photon number less than the number of quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure

    Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.

    Get PDF
    Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake. Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation. Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score. Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task

    NS1 Specific CD8(+) T-Cells with Effector Function and TRBV11 Dominance in a Patient with Parvovirus B19 Associated Inflammatory Cardiomyopathy

    Get PDF
    Background: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. Methodology and Principal Findings: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mg nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amico-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFN gamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFN gamma, IL2, IL27 and Tbet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low. Conclusions: Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes

    A Characterization of Scale Invariant Responses in Enzymatic Networks

    Get PDF
    An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose validity we show is both necessary and sufficient for scale invariance of enzymatic networks. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions
    corecore