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The activities foreseen for 1993/94 are briefly reported.
developments for exhaustive Monte Carlo Simulations of complex events and detectors.
as LHC (16 TeV), SSC (40 TeV) and ELN (Eloisatron, 200 TeV) and ii) software tool
i) phenomenological studies of possible Physics scenarios at future supercolliders such
Carlo Simulations" component of the CERN LAA Project. These concern:

This report contains a summary of the main activities and achievements of the "Monte
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interval \]s = 62 GeV—200 'l`eV have been studied: going from past and existing hadron OCR Output
distributions of different secondary hadrons produced in pp or pi collisions in the energy

implemented via the program PYTHIA [5], for the inclusive spectra and multiplicity

Topological Unitarization Model (DTU) [3], and of the QCD Lund Model [4],

Gluon String Model (QGSM) [2], a particular version of the non-perturbative Dual

interactions at future supercolliders has been carried out. The predictions of the Quark

A study [l] aimed at giving reliable predictions for the bulk of soft inelastic

1. Predictions for standard Physics at 16, 40 and 200 TeV

II. PHENOMENOLOGICAL STUDIES

b) Development of software tools (section III).
a) Phenomenological studies (section H);

following two lines:

In this context, the activities of the MSL group of LAA have developed along the

well as the future data analysis.

characteristics and performances will critically depend on the Monte Carlo simulations, as

events" at a very high frequency (proportional to the luminosity). The detector design, its

supercolliders will be to select "interesting events" out of a huge amount of "background

The task of the detectors which are going to operate at the energies of future

be considered as the expected "background" for the next generation of supercolliders.

Whatever is well established today (such as QCD and EW phenomenology) should

be very complex to analyse.

events with very high multiplicity (hundreds of particles per event) and would therefore

violation. Given the energy of future supercolliders, these phenomena would manifest in

of the Higgs boson, of supersymmetric (SUSY) particles or the occurrence of B+L

phenomena have to be considered such as, for instance, the production of the top quark,

Besides the simulation of the so-called Standard Physics, also new and rare

High Energy Physics.

These studies have become one of the most important and challenging fields of today’s

well as detailed detector design studies to define the construction parameters needed.

logical studies for extrapolations and predictions of the possible Physics scenarios, as

TeV) and ELN (Eloisatron, 200 TeV), will require intensive theoretical and phenomeno

Future experiments at hadron supercolliders, such as LHC (16 TeV), SSC (40
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to account for the NLO (non-leading-order ~ ot$’) conuibution, increasing the cross-section by 1.5+3
The LO (leading order ~ otsz) contribution to the heavy flavour cross-section is multiplied by a K-factor

Again the xp distributions in figure 8 show very little scaling violations as Vs increases.
heavy baryon, is treated in QGSM with string-junction conservation at the diquark level.

production of heavy baryon pairs, the direct fragmentation of the initial baryon (p) into a

charm and beauty baryons (see figure 8) up to 200 TeV. In fact, besides the central

in figure 6, and predicts the expected leading behaviour not only for strange but also for

functions. QGSM seems to better reproduce the experimental data, as shown for instance

mesons and baryons are compared, for a particular choice of K—factor and structure

energies (Vs = 62 GeV and 630 GeV) when the xp-distributions of charm and beauty
6-8 show the discrepancies existing between QGSM and PYTI-HA already at low

parametrizations and three possible K-factors variants has been performed [6]. Figures

functions and K-factorsl. A systematic study of 10 possible structure function

comparing QGSM predictions with PYTHLA results obtained with different structure

Also charm and beauty flavour production has been studied at various energies,

when the light s quark is involved.

figure 5 almost scale with the energy. The same holds true for outgoing Ag baryons,

practically the same both in QGSM and PYTHIA. In both cases, the xp distributions in

5a) but the relative cross-section level for protons in the forward region remains

the central region (being higher in QGSM than in PYTHIA) can increase with Vs (figure

remains leading up to Vs = 200 TeV (see figures lc, 2c, 3c and 5). The pp pair yield in

Tuming now to the "leading" hadron effect, in pp interactions the outgoing proton

two models, as shown in table 1.

multiple interaction processes. All this reflects in different <Nch> predictions from the

contribution of diffraction dissociation and a relatively narrow peak from non—diffractive

of contributions from different numbers of pomerons. PYTHIA predicts in tum a large

dissociation and then a wide maximum with a long tail which corresponds to the overlap

distribution (figure 4), QGSM predicts a relatively small contribution from diffraction

multipomeron processes where softer secondaries are produced. Concerning the Nch

shows a faster decrease of the pion xp-spectrum (figures la, 2a, 3a) due to the effect of

particle (Nch) multiplicity in minimum bias (non elastic) events. The QGSM approach

Feynman·x (xp) distributions of charged hadrons (1:, K, p) and for the total charged

Figures 1-4 show some examples of predictions at Vs = 16, 40 and 200 TeV for the
However, their predictions for the case of very high energies are somehow different.

been found that both models describe reasonably well the existing experimental data.

colliders (ISR, Spp`S, Tevatron) up to the "foreseen" ones (LHC, SSC, ELN). It has
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500 GeV, Higgs detection at LHC appears really critical. Of course, other cuts to

clear: the higher is Vs, the better a heavy Higgs is observable. In particular, for mH >

used: my = 130 GeV, BR(H0->Z0Z0) = 0.3 and BR(Z0—>utt) = 0.03. The message is
refer to four years of running at 1034 cm‘2s‘1 luminosity. The following inputs were
heavy Higgsz, this is not critical and becomes negligible for mH > 750 GeV. The spectra

effect of the experimental resolution has not been included: due to the broad width of the

level in an experiment, are applied. Notice that no cut on the 20 mass is performed. The
on the muon rapidity and transverse momentum, which could be feasible at the on-line

10-12 show the results in terms of 4u invariant mass spectra [8], when for instance cuts

corresponding cross—sections for signal and background are reported in table 2. Figures

been performed. Here, again, the events were generated using PYTHIA. The

Studies on Higgs particle detection at three energies (16, 40 and 200 TeV) have

annihilation.

collisions comes from the continuum production of 20 pairs through gg fusion and qq

20 pairs subsequently decaying into four muons. The main contribution in the case of pp

fusion. The dominating irreducible background is due to all those processes generating

The main processes for Higgs production at a given mass are gg fusion and W+W"

of the vector boson pairs 2020 into muon pairs (H—>ZZ—> y.t"’tL‘|.t‘*‘|.1‘).00 0

clean signal would presumably appear via decay chains containing the subsequent decay

this case the preferred decay of the Higgs is into vector boson pairs (W or Z). A specially

Higgs case (mH >> 2mZ) taking for the Higgs mass mH = 500, 750 and 1000 GeV. In

Thus we are left with a wide mass range, open for speculations. We chose the heavy

bound can be theoretically derived by considering unitarity and gives about 1.2 TeV.

data (LEP) it is known that its lower bound must be around 59 GeV [7]. An upper

There is no precise theoretical prediction for the Higgs mass. From experimental

(SM) which up to now describes experimental data very well.

Higgs boson H0. This is due to the crucial role this particle plays in the Standard Model

One of the main goals of future high energy colliders will be the search for the

2. Heavy Higgs search at 16, 40 and 200 TeV

effect of structure function parametrization and the difficulty of long range extrapolations.

(one "o1d" and two "new") sets of structure functions at Vs = 40 and 200 TeV, show the
future supercolliders. In figure 9 the predictions in terms of Nch, with three different

results are similar at low energies, they become appreciably different at the energies of

PYTHIA predictions obviously depend on structure functions. Although the
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different elements are not an easy task. Figure 16 shows an example of Higgs event at Nl s
Monte Carlo Simulations in a full coverage, complex detector consisting of

4. Detector Simulations

examples in figure 15), supercolliders will be essential to explore the Superworld.

start to operate. Of course, given the spread of the SUSY particle mass spectrum (see the

already at the energy level where LEP I, Tevatron, HERA or LEP H are operating or will

1/otcm, ots and sin29w), it could very well be that SUSY breaking is "around the comer"
Physics ingredients needed in this analysis (in particular, the new LEP measurements of

conclusion is that, given the theoretical uncertainties and experimental errors of all the

lot of effort understanding this problem [11-17]. Figure 14 summarizes our results. Our

energy the lightest sparticle could show up, is a fascinating question. We have devoted a

Where the effective threshold for Supersymmetry breaking is, i.e. at which level of

3. The effective threshold for SUSY breaking

and the best compromise between purity and efficiency is achieved ir1 both cases.

with respect to the "traditional" analysis method when the same input variables are used

cross-section is really small. Work is in progress to understand how the NN performs

This is of course of great relevance in those conditions (of mH or Vs) where the Higgs
to a good S/B ratio, can be achieved with the NN approach at high efficiency4 levels.

be the following: a good Higgs selection corresponding to a good level of purity? or, say,

with the NN for the case of mH = 750 GeV are shown in figure 13. The trend seems to

presented to thenetwork and its quality of performance is estimated. The results obtained

types. Once training is completed, new events (not contained in the training sets) are

of Higgs and background events (training sets) to learn the difference between both event

the fastest four particles of the fastest jet in the event. Then the NN is trained on two sets

is chosen. This essentially consists in the p and pt (with respect to the jet axis) values of

the p and pt information of all tracks) and a set of significant variables to be fed to the NN

the package JETNET [10] for NN simulation. Each event is analysed as a whole (using

PYTHIA to generate Higgs and background events, containing four muons as above, and

signatures that could be implemented in an experiment at a high-level of trigger. We use

network (NN) [9]. The idea is to use the NN as a "feature extractor" to derive event

In addition we have studied a new approach to the problem with the help of a neural

have been investigated[8].

enhance the SignalfBackground (S/B) ratio, in particular conceming the pt of the Z0s,
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for all the different existing event generators. MEGA is intemally organised via ADAMO

(Monte Carlo Event Generator Adaptor) [19], which provides a unique standard database

output commonblock. It consists of a package of routines, collectively called MEGA

Carlo event generators has been worked out, which is by far more complete than a simple

A solution to the problem of standardising the data structure for the output of Monte

1. Monte Carlo Event Generator Adaptor (MEGA)

give a list of items on which the group has so far focused its activities.

recently Monte Carlo authors agreed on the introduction of some standards. Below we

have to be interfaced to different detector simulation and/or analysis programs. Only

becomes very difficult. The problem critically shows up when different event generators

translates into huge software packages, whose organisation, handling and mutual linking

events increase with energy also the detector size and complexity increase. All this

to the software needed for Monte Carlo simulations. As the energy and multiplicity of

As already mentioned, the MSL group has also treated technical problems, related

III. DEVELOPMENT OF SOFTWARE TOOLS

computing community so far.

production, digitization of hit points) is still a major problem despite the efforts of the

performances are required (tracking with multiple scattering, energy loss, shower

However the problem of minimizing the GEANT running time when multitask

track (and vertex) Ending algorithms.
punch-through effects;
particle ranges;
magnetic field options;

addressed, in particular concerning the Higgs search via tt detection:

assembled in a unique set-up configuration where the following problems are being

(see section IH) for simulation. In addition, these various components are being

detector), thus providing the appropriate generated events samples and software tools

(scintillating fibre tracker, noble-liquid calorimeter, "spaghetti" calorimeter, muon

been so far to act as a consultant for the various components of the LAA Project

tracked with the well-known GEANT package [18]. The task of the MSL Group has

(for tt tracker) magnetic field options. The event was generated with PYTHIA and

tracker (the latter also in the forward region), with inner (for central tracker) and outer

central tracker followed by an e.m. + hadron calorimeter and by a muon absorber +

40 TeV displayed in the so—ca1led "LAA test detector".‘ This is essentially made of a
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updated) information on particle properties, to be extensively used in any Monte Carlo or

for an automatic update of some universally accessible tile, with the latest (yearly

(PDG), with whom a collaboration has been established. The aim is to produce a scheme

ADAMO Entity-Relationship model. The data are obtained from the Particle Data Group

manage the information on particle properties and their decays, which again uses the

A Particle and Decay Channels Data Base (PDKDB) [25] has been developed, to

4. Particle Decay Data Base (PDKDB)

IBM/VM, UNIX platforms).

GAF to a machine-independent file and "importing" it into another computer (i.e.

etc., SUD runs on VAX/V MS, but ADAMO tools exist for "exporting" the generated

define materials and tracking media, to position the volumes, to divide them into sections,

[24] command interpreter and gives various possibilities: to describe detector volumes, to

version constitutes a very user-friendly tool. It is operated via menus based on the KUIP

geometry. SUD exists in both batch and interactive versions. In particular, the interactive

_A_DAMO File (GAF) where the detector data are mapped according to the GEANT

order to set up the geometry of the detector for FMC. SUD generates a Generalized

program, a new package was written, the so·called SUD (§et-Llp Qescriptor) [23], in

A few years ago, due to the lack of suitable interactive tools to access the GEANT

3. Set-Up Descriptor (SUD)

VAX/V MS.

version 1.3 uses ADAMO version 3.0 and is implemented on both IBM/VM and

detailed description can be found in the most recent LAA Report [22]. The current FMC

from the tracking for further analysis. Figure 18 illustrates the FMC structure. A more

detector. The MEGA tables are used as input, then updated in output with the results

[21] package, where MEGA is interfaced with GEANT to allow particle tracking inside a

An immediate application of MEGA is in fact the FMC (Eull Monte Carlo Qhain)

2. Full Monte Carlo Chain (FMC)

comfortably handled for any further application (see figure 17).

treated as "entities", with their "attributes", and mapped onto tables which can be
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supercolliders. Special emphasis should be given to an extensive study of SUSY particle

predictions up to the highest energy one can realistically foresee for the next generation of

First of all, on new Physics inputs. Second, to provide the most reliable

directions.

hopefully solved, is practically unlimited. The efforts should concentrate on the following

indeed a multitask activity, where the diversity of problems to be experienced, and

The ideas and results presented herein show that Monte Carlo simulations are

IV. ACTIVITIES FORESEEN FOR 1993/1994

interface) is seriously being considered.

integrating existing or forthcoming GEANT developments (in particular, its user

GEANT and eventually visualise the simulated event. Of course the possibility of

system would allow the user to build interactively (graphically) the detector, interact with

an object oriented database (O2 ?), the MOTIF user interface and AVS. Such a new

etc,). The development of an enhanced version of SUD is envisaged using for instance

is in progress to describe the whole geometry package (positioning, divisions, rotations,

mapping the various GEANT shapes and using the same parameters as in GEANT. Work

installation of AVS on our platforms (HP 7xxs), a set of modules has been defined

System (AVS) has been chosen due to its user-friendliness. Few weeks after the

project concerning the detector design. The commercial product Application Visualisation

The increasing power of graphics systems has made it possible to start a new

6. Graphics Development

manual".

provides guidelines to generate the "program maintenance manua1" and the “user

its documentation in a unique framework. Integrated in the CMZ environment, SIM

The Software Information Manager (SIM) [36] is a tool to handle source code and

programs almost automatically.

of the most successful Software Engineering methods, which can be used to derive the

working program. The system has a graphic window to define data flow diagrams, one

task is to reduce the effort when selecting and connecting subroutines and functions in a

help the physicists to build FORTRAN programs using different subroutine libraries. Its

The Comprehensive APPlication Quilder (CAB) [35] system is being developed to
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the future. In addition to the above graphics development, particular care will be devoted

with the ever growing complexity of the Physics phenomena one will have to analyse in

As far as the development of software tools is concerned, it is necessary to cope
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points).

predictions (b) at Vs = 630 GeV (open points) and Vs = 200 TeV (black
beautiful baryons in pp interactions at Vs = 630 GeV, and QGSM
K2 of K-factor [5]) for the xp-distributions of strange, charmed and

PYTHIA predictions (a) (with EHLQ1 [26] structure functions and variantFigure

refer to the outgoing p hemisphere.

QGSM ones as different kind of curves, as indicated. The distributions

GeV. The PYTI-HA results are shown as different kinds of points, the

beauty (b) mesons and baryons produced in pp interactions at Vs = 630

[5] ) and QGSM predictions for the xp-distributions of charm (a) and

Figure PYTHIA (with EHLQ1 [26] structure functions and variant K2 of K-factor

respectively, as indicated.

[29], GRV2 [30] structure functions) are shown as black and open points

[28]. The QGSM and PYTHIA predictions (using EHLQ1 [26], MT2

Figure Inclusive xF·spectrum of A: produced in pp collisions at Vs = 62 GeV

EHLQ1 [26] structure functions are used.

TeV and 200 TeV, as indicated, derived with QGSM (a) and PYTHIA (b).

Figure xp-distributions of outgoing protons in pp collisions at Vs = 62 GeV, 1.8

same predictions are derived for pp collisions at Vs = 16 TeV (b).
using EHLQ1 [26] structure functions, and QGSM (open points). The

[27] (a), compared with the predictions from PYTHIA (black points),

Figure Charged particle multiplicity distributions in pp collisions at Vs = 540 GeV

interactions at Vs = 200 TeV.

Figure Same as figure 1, for 7C`(&), K‘(b), p(c) and p(d) production in pp

Figure Same as figure 1, for pp collisions at Vs = 40 TeV.

singularity for E = xp .-= 0.

inelastic cross—secti0n) since this is not affected by any kinematical

use the variable xp/Gin-dc/xF (where xp=2pL/Vs, xE=2E/Vs, cv;,,=total
points). EHLQ1 (set l) [26] structure functions are used in PYTHLA. We

collisions at Vs= 16 TeV in PYTHIA (black points) and QGSM (open
Figure Feynman-x distributions of :n:+(a), K’(b) and p(c) hadrons produced in pp

FIGURE CAPTIONS
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multiplicity is ~550. Only tracks with p > 0.1 GeV are displayed.

mH = 750 GeV and ptzo > 80 GeV (for each ZU). The total event

"LAA test detector". The process is gg—>HO—>ZOZO->ttp.tL|.t, with
Figure 16 Example of Higgs event produced in pp collisions at Vs = 40 TeV in the

higgsino (with ms- = 200 GeV).

lightest sparticle could be either the W—ino (with mw .= 100 GeV) or the

15Figure Two examples of SUSY particle mass spectra as obtained in [14]. The

mass.

conclusion is that the SUSY breaking threshold could be as low as the Z

120 errors for the experimental inputs (1/otcm, cts, sin29w at mzo), the

where SUSY [SU(5)] breaks into SUSY [SU(3)><SU(2)><U(l)]. Taking

threshold is considered just below the Grand Unification point (EGUT)

[SU(3)><SU(2)><U(1)] breaks into SU(3)><SU(2)><U(1); a smooth heavy

introduced at the level of the light threshold where SUSY

the gaugino masses) is made; a detailed spectrum of light sparticles is

ot;. otg couplings and of all particle and sparticle masses (in particular of

(SUSY) breaking [11-17]. A correct treatment of the evolution of the ot],

Figure 14 Summary of our studies on the effective threshold for Supersymmetry

production at Vs = 16, 40 and 200 TeV, with mH = 750 GeV.
Figure 13 Higgs purity versus efficiency as obtained with NN analysis for Higgs

12Figure Same as figure 10, for mg = 1 TeV.

Figure 11 Same as figure 10, for mH = 750 GeV.

at Vs = 16, 40 and 200 TGV, with mH = 500 GeV.

60 GeV/c, for each tt), as obtained in pp interactions for Higgs production

Figure 10 Four muon invariant mass spectra before and after cuts (lypl < 3 and pq] >

This effect is absent in the "old" set.

produces very high multiplicities due to many multiparton interactions.

increase of the gluon distribution at very small x, i.e. very high Vs,
ones (MT2 [29] and GRV2 [30]). With the "new" sets, the power

structure functions are used: one "old" set (EHLQI [26]) and two "new"

interactions at Vs = 40 TeV (a) and 200 TeV (b). Three different sets of
Figure PYTHIA predictions for the charged particle multiplicity distribution in pp
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program [18].

ISAJET [32], EUROJET [33], and with the well-known GEANT tracking

widely used event generators, i.e. LUND (PYTHIA) [5], HERWIG [31],

properties and SUD for detector description) are interfaced with the most

various databases (MEGA for event generator output, PDKDB for particle

Figure 18 The structure of the FMC (Full Monte Carlo Chain) showing how the

The various attributes of each entity are self-explanatory.

showing how the output of an event generator is organised via ADAMO.

Figure 17 The Entity (panel) - Relationship (arrow) diagram of the MEGA database
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Figure 18 OCR Output

PDKDB : Particles & Decays Data Base
SUD = Set-Up Descriptor
MEGA : Monte carlo Event Generator Adaptor
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