1,212 research outputs found

    Vision based referee sign language recognition system for the RoboCup MSL league

    Get PDF
    In RoboCup Middle Size league (MSL) the main referee uses assisting technology, controlled by a second referee, to support him, in particular for conveying referee decisions for robot players with the help of a wireless communication system. In this paper a vision-based system is introduced, able to interpret dynamic and static gestures of the referee, thus eliminating the need for a second one. The referee's gestures are interpreted by the system and sent directly to the Referee Box, which sends the proper commands to the robots. The system is divided into four modules: a real time hand tracking and feature extraction, a SVM (Support Vector Machine) for static hand posture identification, an HMM (Hidden Markov Model) for dynamic unistroke hand gesture recognition, and a FSM (Finite State Machine) to control the various system states transitions. The experimental results showed that the system works very reliably, being able to recognize the combination of gestures and hand postures in real-time. For the hand posture recognition, with the SVM model trained with the selected features, an accuracy of 98,2% was achieved. Also, the system has many advantages over the current implemented one, like avoiding the necessity of a second referee, working on noisy environments, working on wireless jammed situations. This system is easy to implement and train and may be an inexpensive solution

    Polyhedral vesicles

    Full text link
    Polyhedral vesicles with a large bending modulus of the membrane such as the gel phase lipid membrane were studied using a Brownian dynamics simulation. The vesicles exhibit various polyhedral morphologies such as tetrahedron and cube shapes. We clarified two types of line defects on the edges of the polyhedrons: cracks of both monolayers at the spontaneous curvature of monolayer C0<0C_{\text {0}}<0, and a crack of the inner monolayer at C00C_{\text {0}}\ge0. Around the latter defect, the inner monolayer curves positively. Our results suggested that the polyhedral morphology is controlled by C0C_{\text {0}}.Comment: 4 pages, 5 figure

    Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals

    Full text link
    We report the measurement of infrared transmission of large C60 single crystals. The spectra exhibit a very rich structure with over 180 vibrational absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are observed to have become weakly IR-active. We also observe a large number of higher order combination modes. The temperature (77K - 300K) and pressure (0 - 25KBar) dependencies of these modes were measured and are presented. Careful analysis of the IR spectra in conjunction with Raman scattering data showing second order modes and neutron scattering data, allow the selection of the 46 vibrational modes C60. We are able to fit *all* of the first and second order data seen in the present IR spectra and the previously published Raman data (~300 lines total), using these 46 modes and their group theory allowed second order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Bosonic Excitations in Random Media

    Full text link
    We consider classical normal modes and non-interacting bosonic excitations in disordered systems. We emphasise generic aspects of such problems and parallels with disordered, non-interacting systems of fermions, and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic context. We also stress important differences between bosonic and fermionic problems. One of these follows from the fact that ground state stability of a system requires all bosonic excitation energy levels to be positive, while stability in systems of non-interacting fermions is ensured by the exclusion principle, whatever the single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for bosonic systems between excitations which are Goldstone modes and those which are not. In the case of Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in the low frequency limit, above a critical dimension dcd_c, which in different circumstances takes the values dc=2d_c=2 and dc=0d_c=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density varying with frequency as ρ(ω)ω4\rho(\omega) \propto \omega^4 is a universal feature in systems with ground states that depend on the disorder realisation. We illustrate our conclusions with extensive analytical and some numerical calculations for a variety of models in one dimension

    A generic method to develop simulation models for ambulance systems

    Get PDF
    In this paper, we address the question of generic simulation models and their role in improving emergency care around the world. After reviewing the development of ambulance models and the contexts in which they have been applied, we report the construction of a reusable model for ambulance systems. Further, we describe the associated parameters, data sources, and performance measures, and report on the collection of information, as well as the use of optimisation to configure the service to best effect. Having developed the model, we have validated it using real data from the emergency medical system in a Brazilian city, Belo Horizonte. To illustrate the benefits of standardisation and reusability we apply the model to a UK context by exploring how different rules of engagement would change the performance of the system. Finally, we consider the impact that one might observe if such rules were adopted by the Brazilian system

    Synthesis of substituted indazole acetic acids by N−N bond forming reactions

    Get PDF
    Herein, we report on the discovery and development of novel cascade N−N bond forming reactions for the synthesis of rare indazole acetic acid scaffolds. This approach allows for convenient synthesis of three distinct indazole acetic acid derivatives (unsubstituted, hydroxy, and alkoxy) by heating 3-amino-3-(2-nitroaryl)propanoic acids with an appropriate nucleophile/solvent under basic conditions. The reaction tolerates a range of functional groups and electronic effects and, in total, 23 novel indazole acetic acids were synthesized and characterized. This work offers a valuable strategy for the synthesis of useful scaffolds for drug discovery programs
    corecore