14 research outputs found

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    The spectral energy distribution of fermi bright blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν Fν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, αro, and optical to X-ray, αox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (νSpeak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 1017 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between νSpeak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars. © 2010 The American Astronomical Society

    Nutritonal evaluation of pemphigus foliaceus patients on long term glucocorticoid therapy Avaliação do estado nutricional de pacientes com pênfigo foliáceo sob corticoterapia prolongada

    No full text
    Our objective was to compare food intake and nutritional status of Pemphigus Foliaceus patients (PG) on long term glucocorticoid therapy to a Control Group (CG). Fourteen PG female inpatients receiving prednisone (0.33 ± 0.22mg/kg) for at least 12 months and twelve CG subjects were submitted to nutritional evaluation, including anthropometry, urinary creatinine determination and serum biochemical measurements, besides 48-h-based food intake records. Groups were compared by Chi-square, Mann-Whitney and "t" tests. PG patients and CG were paired, respectively, in relation to age (24.7 ± 14.1 vs. 22.0 ± 12.0 years), body mass index (25.8 ± 6.4 vs. 24.0 ± 5.6kg/m2), daily protein intake (132.9 ± 49.8 vs. 95.2 ± 58.9g), and serum albumin (median; range) (3.8; 3.5-4.1 vs. 3.8; 3.6-5.0g/dl). However, PG patients had lower height-creatinine index (64.8 ± 17.6 vs. 90.1 ± 33.4%), and higher daily energy (3080 ± 1099 vs. 2187 ± 702kcal) and carbohydrate (376.8 ± 135.8 vs. 242.0 ± 80.7g) intakes. Despite high food, protein and energy consumption, PG patients on long term glucocorticoid therapy had lower body muscle mass than controls, while showing high body fat stores. These findings are possibly related to combined metabolic effects of long term corticotherapy and inflammatory disease plus corticosteroid-induced increased appetite.<br>O objetivo deste trabalho foi comparar o estado nutricional e dados de ingestão alimentar de pacientes com Pênfigo Foliáceo (PF, n=14) sob corticoterapia prolongada (prednisona, 0,33 ± 0,22mg/kg/dia há mais de 12 meses) com um Grupo Controle (GC, n=12). A avaliação constou de inquérito alimentar de 48 horas, antropometria e determinação de creatinina urinária de 24h e albumina sérica. Os grupos PF e GC foram pareados, respectivamente, quanto à idade (24,7 ± 14,1 vs 22,0 ± 12,0 anos), índice de massa corporal (25,8 ± 6,4 vs 24,0 ± 5,6kg/m2), ingestão diária de proteína (132,9 ± 49,8 vs 95,2 ± 58,9g) e albumina sérica (mediana;faixa de variação) (3,8;3,5-4,1 vs 3,8;3,6-5,0g/dl). Pacientes com pênfigo apresentaram menor índice creatinina-altura (64,8 ± 17,6 vs 90,1 ± 33,4%) e maior ingestão de energia (3080 ± 1099 vs 2187 ± 702kcal/dia) e carboidratos (376,8 ± 135,8 vs 242,0 ± 80,7g/dia). Apesar do maior consumo de alimentos, os pacientes com pênfigo apresentaram menor massa muscular que os controles, achados possivelmente relacionados ao aumento do apetite e efeitos metabólicos combinados da corticoterapia e da doença inflamatória crônica

    Fermi-LAT Observations of High-Energy γ\gamma-Ray Emission Toward the Galactic Center

    Get PDF
    The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy γ-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1–100 GeV from a 15° × 15° region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the γ-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner ∼1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15° × 15° region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM
    corecore