7 research outputs found

    Relationship between structural pathology and pain behaviour in a model of osteoarthritis (OA)

    Get PDF
    Objectives To address the hypothesis that different types of established OA pain behaviours have associations with different aspects of articular pathology, we investigated the relationship between structural knee joint pathology and pain behaviour following injection of a low versus a high dose of monosodium iodoacetate (MIA) in the rat. Methods Rats received a single intra-articular injection of 0.1mg or 1mg MIA or saline (control). Pain behaviour (hind limb weight bearing asymmetry (WB) and hindpaw withdrawal threshold (PWT) to punctate stimulation) was assessed. Cartilage and synovium were examined by macroscopic visualisation of articular surfaces and histopathology. Results Both doses of MIA lowered PWTs, 1mg MIA also resulted in WB asymmetry. Both doses were associated with cartilage macroscopic appearance, proteoglycan loss, abnormal chondrocyte morphology, increased numbers of vessels crossing the osteochondral junction, synovitis and macrophage infiltration into the synovium. PWTs were more strongly associated with chondrocyte morphology, synovitis and macrophage infiltration than with loss of cartilage surface integrity. Conclusions Both pain behaviours were associated with OA structural severity and synovitis. Differences in pain phenotype following low versus higher dose of MIA were identified despite similar structural pathology. OA structural pathology as traditionally measured only partially explains the MIA-induced pain phenotype

    The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain

    Get PDF
    Objective: Nerve growth factor (NGF) has a pivotal role in peripheral hyperalgesia and inflammation; anti-NGF antibodies attenuate pain responses in inflammatory pain models, and in people with osteoarthritis (OA) or low back pain. The aim of this study was to characterise the peripheral mechanisms contributing to the analgesic effects of anti-NGF antibody treatment in an established model of joint pain, which mimics key clinical features of OA. Design: Effects of preventative vs therapeutic treatment with an anti-NGF antibody (monoclonal antibody 911: muMab 911 (10 mg/kg, s.c.)) on pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWT)), cartilage damage, synovitis and numbers of subchondral osteoclasts were investigated in the monosodium iodoacetate (MIA) model. Potential direct effects of NGF on receptor activator of nuclear factor kappa-B ligand (RANKL) mediated osteoclastogenesis were investigated in cultured human osteoclasts. Results: Intra-articular MIA injection resulted in significant pain behaviour, cartilage damage, synovitis and increased numbers of subchondral osteoclasts. Both preventative and therapeutic treatment with muMab 911 significantly prevented, or reversed, MIA-induced pain behaviour, but did not alter cartilage or synovial pathology quantified at the end of the treatment period. NGF did not facilitate RANKL driven osteoclast differentiation in vitro, but preventative or therapeutic muMab 911 reduced numbers of TRAP positive osteoclasts in the subchondral bone. Conclusions: We demonstrate that anti-NGF antibody treatment attenuates OA pain behaviour despite permitting cartilage damage and synovitis. Indirec

    Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA

    Get PDF
    Objectives: To investigate serum biomarkers, tartrate resistant acid phosphatase 5b (TRAcP5b) and cathepsin K, indicative of osteoclastic bone resorption, and their relationship to pain and pain change in knee osteoarthritis (OA). Methods: Sera and clinical data were collected from 129 people (97 with 3-year follow-up) with knee OA from the Prediction of Osteoarthritis Progression (POP) cohort. Knee OA-related outcomes in POP included: WOMAC pain, NHANES I (pain, aching and stiffness), subchondral sclerosis, and radiographically determined tibiofemoral and patellofemoral OA. Two putative osteoclast biomarkers were measured in sera: TRAcP5b and cathepsin K. Medial tibia plateaux were donated at knee arthroplasty for symptomatic OA (n=84) or from 16 post mortem controls from the Arthritis Research UK (ARUK) Pain Centre joint tissue repository. Osteoclasts were stained for TRAcP within the subchondral bone of the medial tibia plateaux. Results: Serum TRAcP5b activity, but not cathepsin K-immunoreactivity, was associated with density of TRAcP-positive osteoclasts in the subchondral bone of medial tibia plateaux. TRAcP-positive osteoclasts were more abundant in people with symptomatic OA compared to controls. Serum TRAcP5b activity was associated with baseline pain and pain change. Conclusions: Our observations support a role for subchondral osteoclast activity in the generation of OA pain. Serum TRAcP5b might be a clinically relevant biomarker of disease activity in OA
    corecore