609 research outputs found

    The influence of relative age effects on the cardiorespiratory fitness levels of children age 9 to 10 and 11 to 12 years of age

    Get PDF
    The aims of this study were firstly to examine whether there was an observed relative age effect in the cardiorespiratory fitness scores of 9-10 and 11-12 year old children, and secondly whether any observed effect was maintained after controlling for somatic maturity. Cardiorespiratory fitness data from 11,404 children aged 9-10 years and 3,911 children aged 11-12 years were obtained from a large cross-sectional field-based fitness testing program. A one-way ANOVA revealed a statistically significant relative age effect (p &lt; .01) existed in the 20mSRT scores across all the age groups. Furthermore, ANCOVA analyses identified a statistically significant relative age effect was maintained after controlling for somatic maturation (p &lt; .05). From a public health perspective these results confirm the existence of relative age effects for the first time and consequently may hold implications for relatively younger children in the accurate assessment of their cardiorespiratory fitness scores.</jats:p

    Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor

    Full text link
    We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be determined either from the time-like pion form factor or through the constraint that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version

    Michaelis-Menten Dynamics in Complex Heterogeneous Networks

    Full text link
    Biological networks have been recently found to exhibit many topological properties of the so-called complex networks. It has been reported that they are, in general, both highly skewed and directed. In this paper, we report on the dynamics of a Michaelis-Menten like model when the topological features of the underlying network resemble those of real biological networks. Specifically, instead of using a random graph topology, we deal with a complex heterogeneous network characterized by a power-law degree distribution coupled to a continuous dynamics for each network's component. The dynamics of the model is very rich and stationary, periodic and chaotic states are observed upon variation of the model's parameters. We characterize these states numerically and report on several quantities such as the system's phase diagram and size distributions of clusters of stationary, periodic and chaotic nodes. The results are discussed in view of recent debate about the ubiquity of complex networks in nature and on the basis of several biological processes that can be well described by the dynamics studied.Comment: Paper enlarged and modified, including the title. Some problems with the pdf were detected in the past. If they persist, please ask for the pdf by e-mailing yamir(at_no_spam)unizar.es. Version to appear in Physica

    Triple oxygen isotopic composition of the high-<sup>3</sup>He/<sup>4</sup>He mantle

    Get PDF
    Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth’s mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the Δ17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle − Δ17OHigh 3He/4He olivine = −0.002 ± 0.004 (2 × SEM)‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection. The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (∼5‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that magmatic oxygen is sourced from the same mantle as other, more incompatible elements and that the intermediate δ18O value is a feature of the high-3He/4He mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O–87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source

    Solar Wakes of Dark Matter Flows

    Get PDF
    We analyze the effect of the Sun's gravitational field on a flow of cold dark matter (CDM) through the solar system in the limit where the velocity dispersion of the flow vanishes. The exact density and velocity distributions are derived in the case where the Sun is a point mass. The results are extended to the more realistic case where the Sun has a finite size spherically symmetric mass distribution. We find that regions of infinite density, called caustics, appear. One such region is a line caustic on the axis of symmetry, downstream from the Sun, where the flow trajectories cross. Another is a cone-shaped caustic surface near the trajectories of maximum scattering angle. The trajectories forming the conical caustic pass through the Sun's interior and probe the solar mass distribution, raising the possibility that the solar mass distribution may some day be measured by a dark matter detector on Earth. We generalize our results to the case of flows with continuous velocity distributions, such as that predicted by the isothermal model of the Milky Way halo.Comment: 30 pages, 8 figure

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1p−Γ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
    • …
    corecore