1,474 research outputs found

    Poynting vector, energy density and energy velocity in anomalous dispersion medium

    Get PDF
    The Poynting vector, energy density and energy velocity of light pulses propagating in anomalous dispersion medium (used in WKD-like experiments) are calculated. Results show that a negative energy density in the medium propagates along opposite of incident direction with such a velocity similar to the negative group velocity while the direction of the Poynting vector is positive. In other words, one might say that a positive energy density in the medium would propagate along the positive direction with a speed having approximately the absolute valueof the group velocity. We further point out that neither energy velocity nor group velocity is a good concept to describe the propagation process of light pulse inside the medium in WKD experiment owing to the strong accumulation and dissipation effects.Comment: 6 page

    General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes

    Full text link
    We find broad classes of solutions to the field equations for d-dimensional gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field with non-vanishing potential. Our construction generates these configurations from the solution of a single nonlinear ordinary differential equation, whose form depends on the scalar potential. For an exponential potential we find solutions corresponding to brane geometries, generalizing the black p-branes and S-branes known for the case of vanishing potential. These geometries are singular at the origin with up to two (regular) horizons. Their asymptotic behaviour depends on the parameters of the model. When the singularity has negative tension or the cosmological constant is positive we find time-dependent configurations describing accelerating universes. Special cases give explicit brane geometries for (compact and non-compact) gauged supergravities in various dimensions, as well as for massive 10D supergravity, and we discuss their interrelation. Some examples lift to give new solutions to 10D supergravity. Limiting cases with a domain wall structure preserve part of the supersymmetries of the vacuum. We also consider more general potentials, including sums of exponentials. Exact solutions are found for these with up to three horizons, having potentially interesting cosmological interpretation. We give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio

    Irreducible holonomy algebras of Riemannian supermanifolds

    Full text link
    Possible irreducible holonomy algebras \g\subset\osp(p,q|2m) of Riemannian supermanifolds under the assumption that \g is a direct sum of simple Lie superalgebras of classical type and possibly of a one-dimensional center are classified. This generalizes the classical result of Marcel Berger about the classification of irreducible holonomy algebras of pseudo-Riemannian manifolds.Comment: 27 pages, the final versio

    Ferromagnetism in the Two-Dimensional Periodic Anderson Model

    Full text link
    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low energy theories to assist in interpreting the numerical results. For 1/4 filling we found that the system can be a Mott or a charge transfer insulator, depending on the relative values of the Coulomb interaction and the charge transfer gap between the two non-interacting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge transfer insulator, we would find that the ferromagnetism is induced by the well-known RKKY interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the non-doped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean field theory calculations, but they were consistent with that obtained by density matrix renormalization group calculations of the one-dimensional periodic Anderson model

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mhm_h \sim 200 GeV) once the effective muon Yukawa coupling is large (ξμ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501

    Non-Invasive Mouse Models of Post-Traumatic Osteoarthritis

    Get PDF
    SummaryAnimal models of osteoarthritis (OA) are essential tools for investigating the development of the disease on a more rapid timeline than human OA. Mice are particularly useful due to the plethora of genetically modified or inbred mouse strains available. The majority of available mouse models of OA use a joint injury or other acute insult to initiate joint degeneration, representing post-traumatic osteoarthritis (PTOA). However, no consensus exists on which injury methods are most translatable to human OA. Currently, surgical injury methods are most commonly used for studies of OA in mice; however, these methods may have confounding effects due to the surgical/invasive injury procedure itself, rather than the targeted joint injury. Non-invasive injury methods avoid this complication by mechanically inducing a joint injury externally, without breaking the skin or disrupting the joint. In this regard, non-invasive injury models may be crucial for investigating early adaptive processes initiated at the time of injury, and may be more representative of human OA in which injury is induced mechanically. A small number of non-invasive mouse models of PTOA have been described within the last few years, including intra-articular fracture of tibial subchondral bone, cyclic tibial compression loading of articular cartilage, and anterior cruciate ligament (ACL) rupture via tibial compression overload. This review describes the methods used to induce joint injury in each of these non-invasive models, and presents the findings of studies utilizing these models. Altogether, these non-invasive mouse models represent a unique and important spectrum of animal models for studying different aspects of PTOA

    Abnormal number of Nambu-Goldstone bosons in the color-asymmetric 2SC phase of an NJL-type model

    Full text link
    We consider an extended Nambu--Jona-Lasinio model including both (q \bar q)- and (qq)-interactions with two light-quark flavors in the presence of a single (quark density) chemical potential. In the color superconducting phase of the quark matter the color SU(3) symmetry is spontaneously broken down to SU(2). If the usual counting of Goldstone bosons would apply, five Nambu-Goldstone (NG) bosons corresponding to the five broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three gapless diquark excitations of quark matter. One of them is an SU(2)-singlet, the remaining two form an SU(2)-(anti)doublet and have a quadratic dispersion law in the small momentum limit. These results are in agreement with the Nielsen-Chadha theorem, according to which NG-bosons in Lorentz-noninvariant systems, having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG-bosons is shown to be related to a nonvanishing expectation value of the color charge operator Q_8 reflecting the lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are argued to become massless, resulting in a normal number of five NG-bosons with usual linear dispersion laws.Comment: 13 pages, 4 figures, revtex

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature

    Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models

    Full text link
    In the framework of general two-Higgs-doublet models, we calculate the branching ratios of various inclusive charmless b decays by using the low energy effective Hamiltonian including next-to-leading order QCD corrections, and examine the current status and the new physics effects on the determination of the charm multiplicity ncn_c and semileptonic branching ratio BSLB_{SL}. Within the considered parameter space, the enhancement to the ratio BR(bsg)BR(b \to s g) due to the charged-Higgs penguins can be as large as a factor of 8 (3) in the model III (II), while the ratio BR(bnocharm)BR(b \to no charm) can be increased from the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II). Consequently, the value of BSLB_{SL} and ncn_c can be decreased simultaneously in the model III. The central value of BSLB_{SL} will be lowered slightly by about 0.003, but the ratio ncn_c can be reduced significantly from the theoretical prediction of nc=1.28±0.05n_c= 1.28 \pm 0.05 in the SM to nc=1.23±0.05n_c= 1.23 \pm 0.05, 1.18±0.051.18 \pm 0.05 for mH+=200,100m_{H^+}=200, 100 GeV, respectively. We find that the predicted ncn_c and the measured ncn_c now agree within roughly one standard deviation after taking into account the effects of gluonic charged Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be published in Phys.Rev.
    corecore