581 research outputs found

    Conventional inactivated bivalent H5/H7 vaccine prevents viral localization in muscles of turkeys infected experimentally with low pathogenic avian influenza and highly pathogenic avian influenza H7N1 isolates

    Get PDF
    Highly pathogenic avian influenza (HPAI) viruses cause viraemia and systemic infections with virus replication in internal organs and muscles; in contrast, low pathogenicity avian influenza (LPAI) viruses produce mild infections with low mortality rates and local virus replication. There is little available information on the ability of LPAI viruses to cause viraemia or on the presence of avian influenza viruses in general in the muscles of infected turkeys. The aim of the present study was to determine the ability of LPAI and HPAI H7N1 viruses to reach muscle tissues following experimental infection and to determine the efficacy of vaccination in preventing viraemia and meat localization. The potential of infective muscle tissue to act as a source of infection for susceptible turkeys by mimicking the practice of swill-feeding was also investigated. The HPAI virus was isolated from blood and muscle tissues of all unvaccinated turkeys; LPAI could be isolated only from blood of one bird and could be detected only by reverse transcriptasepolymerase chain reaction in muscles. In contrast, no viable virus or viral RNA could be detected in muscles of vaccinated/challenged turkeys, indicating that viral localization in muscle tissue is prevented in vaccinated birds

    Vacuum Fluctuations, Geometric Modular Action and Relativistic Quantum Information Theory

    Full text link
    A summary of some lines of ideas leading to model-independent frameworks of relativistic quantum field theory is given. It is followed by a discussion of the Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular objects associated with the quantum field vacuum state and certain algebras of observables. The distillability concept, which is significant in specifying useful entanglement in quantum information theory, is discussed within the setting of general relativistic quantum field theory.Comment: 26 pages. Contribution for the Proceedings of a Conference on Special Relativity held at Potsdam, 200

    Transport by molecular motors in the presence of static defects

    Get PDF
    The transport by molecular motors along cytoskeletal filaments is studied theoretically in the presence of static defects. The movements of single motors are described as biased random walks along the filament as well as binding to and unbinding from the filament. Three basic types of defects are distinguished, which differ from normal filament sites only in one of the motors' transition probabilities. Both stepping defects with a reduced probability for forward steps and unbinding defects with an increased probability for motor unbinding strongly reduce the velocities and the run lengths of the motors with increasing defect density. For transport by single motors, binding defects with a reduced probability for motor binding have a relatively small effect on the transport properties. For cargo transport by motors teams, binding defects also change the effective unbinding rate of the cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl

    Requirements of leaf wetness and temperature for infection of groundnut by rust

    Get PDF
    Experiments are described to quantify the effects of temp. and duration of leaf wetness on infection of groundnut by Puccinia arachidis. After inoculation, a min. period of leaf wetness, m, was necessary for infection. When leaf wetness duration was >m, lesion density increased with increasing wetness duration to an asymptote, Dmax. The principal effects of temp. were on m and Dmax. The value of m decreased linearly from 6 h, as temp. increased from 15 to 25°C and increased slightly at temp. >25°. Dmax increased with temp. from zero at 8° to a max. at 22°, and decreased to zero again at c. 30°. The experimental results were used to produce a set of curves relating an infection index to leaf wetness duration at different temp. The implications for infection of groundnut crops are discussed in relation to the climate at Patancheru in southern India

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.

    Highly selective aptamer‐molecularly imprinted polymer hybrids for recognition of SARS‐CoV‐2 spike protein variants

    Get PDF
    Virus recognition has been driven to the forefront of molecular recognition research due to the COVID-19 pandemic. Development of highly sensitive recognition elements, both natural and synthetic is critical to facing such a global issue. However, as viruses mutate, it is possible for their recognition to wane through changes in the target substrate, which can lead to detection avoidance and increased false negatives. Likewise, the ability to detect specific variants is of great interest for clinical analysis of all viruses. Here, a hybrid aptamer-molecularly imprinted polymer (aptaMIP), that maintains selective recognition for the spike protein template across various mutations, while improving performance over individual aptamer or MIP components (which themselves demonstrate excellent performance). The aptaMIP exhibits an equilibrium dissociation constant of 1.61 nM toward its template which matches or exceeds published examples of imprinting of the spike protein. The work here demonstrates that “fixing” the aptamer within a polymeric scaffold increases its capability to selectivity recognize its original target and points toward a methodology that will allow variant selective molecular recognition with exceptional affinity

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK
    corecore