44 research outputs found

    State of the world’s plants and fungi 2020

    Get PDF
    Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Are isofurans and neuroprostanes increased after subarachnoid hemorrhage and traumatic brain injury?

    No full text
    Current diagnostic tools to assess neurological injury after aneurysmal subarachnoid hemorrhage (aSAH) and traumatic brain injury (TBI) have poor discriminatory abilities. Free radicals are associated with the pathophysiology of secondary damage after brain trauma. We examined cerebrospinal fluid (CSF) lipid markers of oxidative stress, isofurans (IsoFs), F4-neuroprostanes (F4-NeuroPs), and F2-isoprostanes (F2-IsoPs), in two case-controlled studies in patients with aSAH or severe TBI. Patients with aSAH (n=18) or TBI (n=18) were age and gender matched with separate control groups. CSF samples were collected from patients within 24 h of the injury. CSF IsoFs and F4-NeuroPs were increased in aSAH patients compared with their controls. In TBI patients, IsoFs and F4-NeuroPs were increased compared with their controls. F2-IsoPs were increased in aSAH patients, but not in TBI patients, compared with their respective controls. CSF IsoFs and F4-NeuroPs are consistently increased after a catastrophic central nervous system injury. These results suggest their measurement may enhance the management of unconscious patients in neurological care
    corecore