30 research outputs found

    Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition

    Full text link
    We examine metastable and transient effects both above and below the first-order decoupling line in a 3D simulation of magnetically interacting pancake vortices. We observe pronounced transient and history effects as well as supercooling and superheating between the 3D coupled, ordered and 2D decoupled, disordered phases. In the disordered supercooled state as a function of DC driving, reordering occurs through the formation of growing moving channels of the ordered phase. No channels form in the superheated region; instead the ordered state is homogeneously destroyed. When a sequence of current pulses is applied we observe memory effects. We find a ramp rate dependence of the V(I) curves on both sides of the decoupling transition. The critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR

    A review of Monte Carlo simulations of polymers with PERM

    Full text link
    In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the Θ\Theta point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011

    Solubility of cytoskeletal proteins in immunohistochemistry and the influence of fixation.

    No full text
    For accurate and quantitative immunohistochemical localization of antigens it is crucial to know the solubility of tissue proteins and their degree of loss during processing. In this study we focused on the solubility of several cytoskeletal proteins in cat brain tissue at various ages and their loss during immunohistochemical procedures. We further examined whether fixation affected either solubility or immunocytochemical detectability of several cytoskeletal proteins. An assay was designed to measure the solubility of cytoskeletal proteins in cryostat sections. Quantity and quality of proteins lost or remaining in tissue were measured and analyzed by electrophoresis and immunoblots. Most microtubule proteins were found to be soluble in unfixed and alcohol fixed tissues. Furthermore, the microtubule proteins remaining in the tissue had a changed cellular distribution. In contrast, brain spectrin and all three neurofilament subunits were insoluble and remained in the tissue, allowing their immunocytochemical localization in alcohol-fixed tissue. Synapsin I, a protein associated with the spectrin cytoskeleton, was soluble, and aldehyde fixation is advised for its immunohistochemical localization. With aldehyde fixation, the immunoreactivity of some antibodies against neurofilament proteins was reduced in axons unveiling novel immunogenic sites in nuclei that may represent artifacts of fixation. In conclusion, protein solubility and the effects of fixation are influential factors in cytoskeletal immunohistochemistry, and should be considered before assessments for a quantitative distribution are made

    Axonal Transport Defects in Neurodegenerative Diseases

    No full text
    Adult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT). Accordingly, deficits in AT have been documented in most AONDs, suggesting a common defect acquired through different pathogenic pathways. These observations suggest that many AONDs can be categorized as dysferopathies, diseases in which alterations in AT represent a critical component in pathogenesis. Topics here address various molecular mechanisms underlying alterations in AT in several AONDs. Illumination of such mechanisms provides a framework for the development of novel therapeutic strategies aimed to prevent axonal and synaptic dysfunction in several major AOND
    corecore