609 research outputs found
Changes in nutrient content of rye, triticale, and wheat whole-plant forages with maturity
We compared upland and bottomland cereals seeded during 1991 at the KSU Agricultural Research Center - Hays. The five crops (three varieties of triticale, a winter wheat, and a winter rye) were harvested as whole plants during the latter part of the growing season. Crude protein (CP), ac id detergent fiber (ADF), and neutral detergent fiber (NDF) were estimated using near infrared spectroscopy. Compute r models were developed to describe nutrient changes. Crude protein content decreased whereas the two fiber components increased with maturity. Rye and wheat tended to have lower CP values when day 125 was used as the arbitrary harvest date. We observed only slight differences i n nutritional components between upland and bottomland plantings
Recommended from our members
Management of solid waste
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options
Crowdsourcing as a platform for digital labor unions
Global complex supply chains have made it difficult to know the realities in factories. This structure obfuscates the networks, channels, and flows of communication between employers, workers, nongovernmental organizations and other vested intermediaries, creating a lack of transparency. Factories operate far from the brands themselves, often in developing countries where labor is cheap and regulations are weak. However, the emergence of social media and mobile technology has drawn the world closer together. Specifically, crowdsourcing is being used in an innovative way to gather feedback from outsourced laborers with access to digital platforms.
This article examines how crowdsourcing platforms are used for both gathering and sharing information to foster accountability. We critically assess how these tools enable dialogue between brands and factory workers, making workers part of the greater conversation. We argue that although there are challenges in designing and implementing these new monitoring systems, these platforms can pave the path for new forms of unionization and corporate social responsibility beyond just rebranding
Crowdsourcing as a platform for digital labor unions
Global complex supply chains have made it difficult to know the realities in factories. This structure obfuscates the networks, channels, and flows of communication between employers, workers, nongovernmental organizations and other vested intermediaries, creating a lack of transparency. Factories operate far from the brands themselves, often in developing countries where labor is cheap and regulations are weak. However, the emergence of social media and mobile technology has drawn the world closer together. Specifically, crowdsourcing is being used in an innovative way to gather feedback from outsourced laborers with access to digital platforms. This article examines how crowdsourcing platforms are used for both gathering and sharing information to foster accountability. We critically assess how these tools enable dialogue between brands and factory workers, making workers part of the greater conversation. We argue that although there are challenges in designing and implementing these new monitoring systems, these platforms can pave the path for new forms of unionization and corporate social responsibility beyond just rebranding
An Analog Model for Quantum Lightcone Fluctuations in Nonlinear Optics
We propose an analog model for quantum gravity effects using nonlinear
dielectrics. Fluctuations of the spacetime lightcone are expected in quantum
gravity, leading to variations in the flight times of pulses. This effect can
also arise in a nonlinear material. We propose a model in which fluctuations of
a background electric field, such as that produced by a squeezed photon state,
can cause fluctuations in the effective lightcone for probe pulses. This leads
to a variation in flight times analogous to that in quantum gravity. We make
some numerical estimates which suggest that the effect might be large enough to
be observable.Comment: 15 pages, no figure
Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions
Our previous point-contact Andreev reflection studies of the heavy-fermion
superconductor CeCoIn using Au tips have shown two clear features: reduced
Andreev signal and asymmetric background conductance [1]. To explore their
physical origins, we have extended our measurements to point-contact junctions
between single crystalline heavy-fermion metals and superconducting Nb tips.
Differential conductance spectra are taken on junctions with three
heavy-fermion metals, CeCoIn, CeRhIn, and YbAl, each with different
electron mass. In contrast with Au/CeCoIn junctions, Andreev signal is not
reduced and no dependence on effective mass is observed. A possible explanation
based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et
al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc.
Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press)
(cond-mat/0606535).Comment: 2 pages, 2 figures, submitted to the SCES conference, Houston, Texas,
USA, May 13-18, 200
Time-distance analysis of the emerging active region NOAA 10790
We investigate the emergence of Active Region NOAA 10790 by means of time – distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic-flux and thus obtain a provisional estimate of the speed of emergence of around 1 km s−1
Recommended from our members
Recent progress with the DNA repair mutants of Chinese hamster ovary cells
Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs
Spreading Dynamics of Polymer Nanodroplets
The spreading of polymer droplets is studied using molecular dynamics
simulations. To study the dynamics of both the precursor foot and the bulk
droplet, large drops of ~200,000 monomers are simulated using a bead-spring
model for polymers of chain length 10, 20, and 40 monomers per chain. We
compare spreading on flat and atomistic surfaces, chain length effects, and
different applications of the Langevin and dissipative particle dynamics
thermostats. We find diffusive behavior for the precursor foot and good
agreement with the molecular kinetic model of droplet spreading using both flat
and atomistic surfaces. Despite the large system size and long simulation time
relative to previous simulations, we find no evidence of hydrodynamic behavior
in the spreading droplet.Comment: Physical Review E 11 pages 10 figure
Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory
Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications
- …