41 research outputs found

    KAM for the quantum harmonic oscillator

    Full text link
    In this paper we prove an abstract KAM theorem for infinite dimensional Hamiltonians systems. This result extends previous works of S.B. Kuksin and J. P\"oschel and uses recent techniques of H. Eliasson and S.B. Kuksin. As an application we show that some 1D nonlinear Schr\"odinger equations with harmonic potential admits many quasi-periodic solutions. In a second application we prove the reducibility of the 1D Schr\"odinger equations with the harmonic potential and a quasi periodic in time potential.Comment: 54 pages. To appear in Comm. Math. Phy

    Twistless KAM tori

    Full text link
    A selfcontained proof of the KAM theorem in the Thirring model is discussed.Comment: 7 pages, 50 K, Plain Tex, generates one figure named gvnn.p

    Double exponential stability of quasi-periodic motion in Hamiltonian systems

    Get PDF
    We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems

    Holder continuity of absolutely continuous spectral measures for one-frequency Schrodinger operators

    Full text link
    We establish sharp results on the modulus of continuity of the distribution of the spectral measure for one-frequency Schrodinger operators with Diophantine frequencies in the region of absolutely continuous spectrum. More precisely, we establish 1/2-Holder continuity near almost reducible energies (an essential support of absolutely continuous spectrum). For non-perturbatively small potentials (and for the almost Mathieu operator with subcritical coupling), our results apply for all energies.Comment: 16 page

    Semitoric integrable systems on symplectic 4-manifolds

    Get PDF
    Let M be a symplectic 4-manifold. A semitoric integrable system on M is a pair of real-valued smooth functions J, H on M for which J generates a Hamiltonian S^1-action and the Poisson brackets {J,H} vanish. We shall introduce new global symplectic invariants for these systems; some of these invariants encode topological or geometric aspects, while others encode analytical information about the singularities and how they stand with respect to the system. Our goal is to prove that a semitoric system is completely determined by the invariants we introduce

    Normal Form for the Schr\"odinger equation with analytic non--linearities

    Full text link
    In this paper we discuss a class of normal forms of the completely resonant non--linear Schr\"odinger equation on a torus. We stress the geometric and combinatorial constructions arising from this study. Further analytic considerations and applications to quasi--periodic solutions will appear in a forthcoming article. This paper replaces a previous version correcting some mistakes.Comment: 52 pages, 2 figure

    Foliations of Isonergy Surfaces and Singularities of Curves

    Full text link
    It is well known that changes in the Liouville foliations of the isoenergy surfaces of an integrable system imply that the bifurcation set has singularities at the corresponding energy level. We formulate certain genericity assumptions for two degrees of freedom integrable systems and we prove the opposite statement: the essential critical points of the bifurcation set appear only if the Liouville foliations of the isoenergy surfaces change at the corresponding energy levels. Along the proof, we give full classification of the structure of the isoenergy surfaces near the critical set under our genericity assumptions and we give their complete list using Fomenko graphs. This may be viewed as a step towards completing the Smale program for relating the energy surfaces foliation structure to singularities of the momentum mappings for non-degenerate integrable two degrees of freedom systems.Comment: 30 pages, 19 figure

    Growth of Sobolev norms and controllability of Schr\"odinger equation

    Full text link
    In this paper we obtain a stabilization result for the Schr\"odinger equation under generic assumptions on the potential. Then we consider the Schr\"odinger equation with a potential which has a random time-dependent amplitude. We show that if the distribution of the amplitude is sufficiently non-degenerate, then any trajectory of system is almost surely non-bounded in Sobolev spaces

    Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi- Periodic Perturbations

    Full text link
    We prove that the 1−d1-d quantum harmonic oscillator is stable under spatially localized, time quasi-periodic perturbations on a set of Diophantine frequencies of positive measure. This proves a conjecture raised by Enss-Veselic in their 1983 paper \cite{EV} in the general quasi-periodic setting. The motivation of the present paper also comes from construction of quasi-periodic solutions for the corresponding nonlinear equation

    Resonance tongues in the quasi-periodic Hill-Schrödinger equation with three frequencies

    Get PDF
    n this article we investigate numerically the spectrum of some representative examples of discrete one-dimensional Schrödinger operators with quasi-periodic potential in terms of a perturbative constant b and the spectral parameter a. Our examples include the well-known Almost Mathieu model, other trigonometric potentials with a single quasi-periodic frequency and generalisations with two and three frequencies. We computed numerically the rotation number and the Lyapunov exponent to detect open and collapsed gaps, resonance tongues and the measure of the spectrum. We found that the case with one frequency was significantly different from the case of several frequencies because the latter has all gaps collapsed for a sufficiently large value of the perturbative constant and thus the spectrum is a single spectral band with positive Lyapunov exponent. In contrast, in the cases with one frequency considered, gaps are always dense in the spectrum, although some gaps may collapse either for a single value of the perturbative constant or for a range of values. In all cases we found that there is a curve in the (a, b)-plane which separates the regions where the Lyapunov exponent is zero in the spectrum and where it is positive. Along this curve, which is b = 2 in the Almost Mathieu case, the measure of the spectrum is zero.Peer ReviewedPostprint (published version
    corecore