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Abstract. In this paper we investigate numerically the following Hill’s equa-
tion x′′ + (a + bq(t))x = 0 where q(t) = cos t + cos

√

2t + cos
√

3t is a quasi-
periodic forcing with three rationally independent frequencies. It appears,also,
as the eigenvalue equation of a Schrödinger operator with quasi-periodic po-
tential.

Massive numerical computations were performed for the rotation number
and the Lyapunov exponent in order to detect open and collapsed gaps, res-
onance tongues. Our results show that the quasi-periodic case with three

independent frequencies is very different not only from the periodic analogs,
but also from the case of two frequencies. Indeed, for large values of b the
spectrum contains open intervals at the bottom. From a dynamical point of
view we numerically give evidence of the existence of open intervals of a, for
large b where the system is nonuniformly hyperbolic: the system does not have
an exponential dichotomy but the Lyapunov exponent is positive. In contrast
with the region with zero Lyapunov exponents, both the rotation number and
the Lyapunov exponent do not seem to have square root behavior at endpoints
of gaps. The rate of convergence to the rotation number and the Lyapunov
exponent in the nonuniformly hyperbolic case is also seen to be different from
the reducible case.

“But our tongues get out of control. They are restless and
evil, and always spreading deadly poison”. (James 3, 6)

To our friend Henk Broer,
who likes quasi-periodicity so much,
on his 60th birthday.

1. Introduction

In this paper we want to study numerically Hill’s equation with quasi-periodic
forcing, which is the following non-autonomous second order differential equation

(1.1) x′′ + (a+ bq(t)) x = 0
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where q, called the forcing, is a quasi-periodic function. This means that it can be
written as

q(t) = Q(ωt+ φ), t ∈ R

where Q : Td = (R/2πZ)d → R is a continuous function (although assumed to be
real analytic, or even a trigonometric polynomial, in most of what follows), φ ∈ Td

is a phase and ω = (ω1, . . . , ωd) ∈ Rd is a frequency vector. We will assume that it
is rationally independent in the sense that

〈k, ω〉 = k1ω1 + . . .+ kdωd 6= 0, k ∈ R
d \ {0} .

Note that the periodic Hill equation occurs when d = 1 or when all the frequencies
are multiple of a single one. Without loss of generality, we will assume that Q has
zero average in what follows, changing the value of a if necessary.

A source of interest on these equations is that they are natural generalizations of
the classical Hill’s equations which appear in the study of the stability of invariant
tori, as normal variational equations along a quasi-periodic solution.

Another source of interest is the fact that they show up as eigenvalue equations
of one-dimensional Schrödinger operators with quasi-periodic potentials. Let us
now briefly recall this setting. A quasi-periodic Hill equation like (1.1), belongs to
a family of equations of the form

(1.2) x′′ + (a+ bQ(ωt+ φ)) x = 0,

each of which can be seen as the eigenvalue equation of the following one-dimensional
Schrödinger operator with quasi-periodic potential

(1.3) (Hb,φx) = −x′′ − bQ(ωt+ φ)x,

which is essentially self-adjoint on L2(R). In this context the spectral parameter a is
usually called the energy. Contrary to the periodic case, where the spectrum is the
union of closed intervals (the spectral bands or the elliptic and parabolic cases for
Hill’s equation), separated by open intervals in the resolvent set (the spectral gaps
or the hyperbolic case for Hill’s equation), in the quasi-periodic case the spectrum
may be a Cantor set (gaps being dense in the spectrum) and spectral bands may not
exist. These operators have been focus of intensive research over the last decades
and much is known about the structure of the spectrum of these operators. Note
that due to the rational independence of the frequency vector ω, the spectrum of
any of these operators, for fixed b, Q and ω is independent of φ, and will be denoted
by σb(Q,ω) or simply σb if the context is clear.

When the potential Q is real analytic and the frequency satisfies a Diophantine
condition, Cantor spectrum has been proved for “small” values of |b|, where gener-
icity of Cantor spectrum follows from the genericity of gap opening [33, 18, 7, 36],
which also happens generically in the periodic case [32, 9]. As it also happens
in the periodic case, one can produce examples of real analytic potentials whose
Schrödinger operators have all but a finite number of spectral gaps closed and the
spectrum is not a Cantor set [13]. For genericity results in lower regularity, see
[27, 19, 12, 1] and references therein.

While the theory for these equations is well understood when b is small or when
a is much larger than b (because of the presence of Floquet reducibility, see section
2.1), the situation in the other cases is much less clear. In [8] the following example
with two Diophantine frequencies was numerically studied,

(1.4) x′′ + (a+ b (cos t+ cos γt))x = 0,
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where γ = (
√
5 − 1)/2 is the golden mean. For small values of b all the computed

spectral gaps were open. When b increases, gaps start to grow until they reach a
critical value for which they start shrinking, while they remain open for all computed
values. In this present numerical study we want to extend the study of [8] of
Equation (1.4) to potentials with three rationally independent frequencies and to
try to detect the presence of spectral bands on the bottom of the spectrum for large
values of b. More precisely we will consider the equation

(1.5) x′′ +
(

a+ b
(

cos t+ cos
√
2t+ cos

√
3t
))

x = 0

and compute the rotation number and the Lyapunov exponent to detect the dif-
ferent characteristics of the Hill-Schrödinger equation in the “perturbative regime”
versus the “far from perturbative regime” and the case of 2 versus 3 frequencies.
Note that precisely this model was considered as an illustration in [19], where the
existence of some gaps was numerically explored.

2. Preliminaries

2.1. Dynamical formulation: skew-products flows and reducibility. Many
of the recent results and techniques for quasi-periodic Schrödinger operators are
based on the spectral properties of (1.3) and the dynamical properties of the eigen-
value equations (1.2). As it is customary for second-order differential equations,
they can be written as first order systems with x′ = y and

(2.1)

(

x
y

)′

=

(

0 1
−a− bQ(θ) 0

)(

x
y

)

, θ′ = ω,

where θ = (θ1, . . . , θn) ∈ Td are new angular variables. A system of this kind will
be called a linear skew product flow, and shorthanded as (Aa,b, ω) where

Aa,b(θ) =

(

0 1
−a− bQ(θ) 0

)

.

Note that the flow can be applied both to vectors in u ∈ R
2,

(2.2) u′ = Aa,b(θ)u, θ′ = ω

and to matrices in SL(2,R) and this is why we will refer to (2.1) as a skew-product
flow on SL(2,R).

As it is well-known, linear periodic systems (e.g. when d = 1 in (2.1)) are always
reducible to constant coefficients by means of a periodic transformation (the so-
called Floquet theory). In the quasi-periodic case, such Floquet theory is not always
present. Nevertheless, given a linear skew-product flow like (2.1), it is reducible to
constant coefficients whenever there is a regular transformation Z : Td → SL(2,R)
such that the change of variables

u = Z(ωt)v

renders the system (2.2) into constant coefficients:

v′ = Bv, θ′ = ω

and B ∈ sl(2,C) is a constant matrix, independent of θ, called the Floquet matrix.
Note that neither the Floquet matrix nor the reducing transformation, when they
exist, are uniquely determined, just as in the periodic case. Sometimes it may
also be necessary to halve the frequency, again as in the periodic case. It can be
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seen that such reduction is equivalent to the fulfillment of the following homological
equation

〈∇Z, ω〉 ≡
d

∑

j=1

ωj∂θjZ(θ) = A(θ)Z(θ) − Z(θ)B, θ ∈ T
d,

and that the fundamental matrix solution of a reducible skew-product flow can be
expressed in terms of the following Floquet representation

(2.3) X(t) = Z(ωt+ φ)etBZ(φ)−1,

where θ(0) = φ. When a quasi-periodic linear skew-product is a real analytic pertur-
bation of a system with constant coefficients and the frequencies are Diophantine,
there is generically reducibility for a “large set” [5, 29] or even “full measure” set
of perturbations ([18, 24]), using modified KAM schemes, see Section 2.3.

Virtually all dynamical information of a reducible system can be extracted from
the properties of a Floquet matrix. For instance, when the Floquet matrix of a
reducible system has a negative determinant, then the corresponding skew-product
flow has no bounded solution on R (for any initial phase θ), except for the trivial
one, so that it has an exponential dichotomy [38] (or that it is uniformly hyperbolic)
and all solutions grow exponentially either at +∞ or −∞. It turns out that this
concept is intimately related to the spectrum of the corresponding operator (1.3):
a Schrödinger operator like (1.3) has a value a in the spectrum if, and only if,
the corresponding skew-product flow on R2 × Td has an exponentially dichotomy.
In other words, if and only if, there is a φ ∈ Td such that equation (1.2) has a
nontrivial bounded solution.

In general, to measure the exponential growth of the solutions of a linear skew-
product flow one can use the (upper) Lyapunov exponent,

(2.4) β(a, b) = lim
T→∞

1

T

∫

T

log ‖Xa,b(t; θ)‖ dθ,

where Xa,b(·; θ) is a fundamental solution of the skew-product with θ(0) = θ. This
limit is known to exist by Kingman subadditive ergodic theorem [31]. Note that
skew-product flows with an exponential dichotomy have positive Lyapunov expo-
nent if the system is analytic and the frequencies are Diophantine. Skew-product
flows on SL(2,R) whose upper Lyapunov exponent is positive but are not uni-
formly hyperbolic are consistently called nonuniformly hyperbolic, which can never
be reducible to constant coefficients.

2.2. Rotation number, spectral gaps and resonance tongues. The relation
between exponential dichotomy and the resolvent set (i.e. the complement of the
spectrum in R) is not the only link between the dynamics of (2.1) and the spectral
properties of (1.3). A further insight is obtained by means of the rotation num-
ber, introduced by Johnson & Moser [28] (see also [25] for the discrete version),
which measures how solutions wind around the origin. Given a quasi-periodic Hill
equation (1.1), its rotation number is given by the limit

rot(a, b) = lim
T→+∞

arg (x′(T ) + ix(T ))

2πT
,

where x is any non-trivial solution of (1.1). This number exists and is independent
of the chosen solution. It is also independent of the phase taken in (1.2), so that any
solution of the skew-product flow (2.1) gives rise to the same limit. The existence
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of this limit for the Hill-Schrödinger equations like (1.2) is related to the fact that
dynamics can be transported to the setting of quasi-periodically forced circle flows,
since the new angular variable

ϕ(t) = arg(x′(t) + ix(t))

satisfies the following differential equation

(2.5) ϕ′ = (a+ bQ(ωt+ φ)) sin2 ϕ+ cos2 ϕ.

Note that, when b = 0 then the spectrum is [0,+∞) and rot(a, 0) =
√
a for

positive values of a while it is constant and equal to zero on the resolvent set. This
is no coincidence since, for any fixed value of b, the spectrum is precisely the set
of values of a where the function a 7→ rot(a, b) (which is a nondecreasing function)
is not locally constant [28]. The connected components of the resolvent set (or,
equivalently, points of constancy of the rotation number) are therefore the spectral
gaps. Moreover, the “Gap Labelling Theorem” [28], states that in any of such gaps,
the rotation number must be resonant with respect to ω, that is of the form

αk =
〈k, ω〉
2

,

where k ∈ Zd is a suitable multi-integer such that 〈k, ω〉 ≥ 0. The minimum value
of such resonances, k = 0 corresponds to the lowest gap in the spectrum, which is
a semi-infinite interval from −∞ to a certain value of a (called the lowest energy
in the spectrum).

Not every gap predicted by the Gap Labelling Theorem is open and we will
talk of a collapsed spectral gap with label αk = 〈k, ω〉/2 > 0 whenever, for a fixed
value of b, the set of energies for which the rotation number equals to αk reduces
to a single point which, therefore, belongs to the spectrum. See Section 2.3 for a
discussion of gap opening in the perturbative setting. Nevertheless if all gaps are
open then the spectrum is necessarily a Cantor set since it is given by the points
of increase of a continuous increasing function which is constant whenever it takes
a resonant value and these are dense in [0,+∞).

For a better understanding of the possible collapse of gaps, it is useful to resort
to the concept of resonance tongues, which generalizes the well-known “instability
tongues” in the classical Hill periodic equation [6, 9]. Given any k ∈ Zd such
that αk = 〈k, ω〉/2 ≥ 0, the resonance tongue associated to k (or equivalently to
〈k, ω〉/2) is the set of values in the (a, b)-parameter plane whose rotation number
equals to αk. The interior of resonance tongues is the union of all the intervals of
the resolvent set as a function of b.

The resonance tongue with rotation number αk = 〈k, ω〉/2 emanates from the
point (α2

k
, 0) and, like in the periodic case, its boundaries can meet at a value of

b 6= 0 (where the corresponding gap is collapsed) yielding what we will call an
instability pocket. See [9, 7, 36] for the analysis in the periodic and quasi-periodic
cases, [37] for the discrete case and also the next section.

2.3. The perturbative situation. The structure of resonance tongues and gaps
for small values of |b| and for large a (once b has been fixed) can be understood in
terms of the reducibility of the corresponding skew-product flows. Although this
has been done in detail in [7], let us now give the basic ideas.
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2.3.1. Small |b|. As we noted before, resonance tongues emanate from points in the
b = 0 axis of the form

ak = α2
k = 〈k, ω〉2/4, k ∈ Z

d with 〈k, ω〉 ≥ 0

and for any such k 6= 0 they correspond to the tips of tongue shaped regions which,
for every value of b are given by an interval [a−

k
(b), a+

k
(b)] whose interior, if not

empty, is an open gap in the spectrum. Let us now consider the structure of the
tongue around the tip at b = 0 using reducibility theory. Note that when b = 0,
the matrix of (2.1) is in constant coefficients with matrix

Aak,0 =

(

0 1
−ak 0

)

.

A fundamental solution for a = ak and b = 0 is thus given by

(2.6) X(t) =

(

cos(α0t) α−1
0 sin(α0t)

−α0 sin(α0t) cos(α0t)

)

which is quasi-periodic in t with frequency ω/2. One can, therefore, consider the
change of variables v = Zk(ωt/2)u where

Zk(θ) =

(

cos 〈k, θ〉 α−1
0 sin 〈k, θ〉

−α0 sin 〈k, θ〉 cos 〈k, θ〉

)

which transforms (2.1) into

(2.7) v′ = ((a− ak) + bQ(θ))

(

z11z12 z212
−z211 −z11z12

)

v,

where

z211(t) = cos2(α0t) =
1

2
+

1

2
cos(2α0t),

z212(t) =
1

a0
sin2(α0t) =

1

2a0
− 1

2a0
cos(2α0t),

z11(t)z12(t) =
1

2α0

sin(2α0t)

are quasi-periodic with frequency ω. The transformed system (2.7) is now a per-
turbation of a constant matrix if we introduce new local coordinates δ = a − ak
and denote the new skew-product flow by (Bδ,b, ω), which satisfies B0,0 = 0. To
study this system one can apply any number r of averaging steps [7] to conjugate
it analytically to a new skew-product (Br, ω) of the form

Br(θ, δ, b) = M r(δ, b) + P r+1(θ; a, b)

where the remainder, P r+1, which contains the θ-dependence, is of order r + 1
in (δ, b) and M r is a matrix independent of θ with M r(0, 0) = 0. Although this
process is not convergent as r → ∞, the information obtained at any finite cut r is
sufficient to obtain the formal Taylor expansions of tongue boundaries up to order
r which coincide with the tongues we would obtain if the remainder P r+1 was zero
(see [7] for a thorough description). For instance, using the form of B1 obtained
after (2.7), the derivatives of the two tongue boundaries at b = 0 are given by
(ak±)

′(0) = −Q0±Qk where Qk are the Fourier coefficients of Q. In particular, the
k-th tongue is transversal at b = 0 if, and only if, the corresponding harmonic of Q,
Qk, does not vanish. Although generically this condition of transversality always
holds, it may be hard for a concrete potential to detect the order of contact of the
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tongue boundaries at b = 0. For instance, it was seen in [7] that for Equation (1.4)
the order of tangency of tongue boundaries at b = 0 is exactly ‖k‖1 for almost all
frequencies, although not for all frequencies (not even Diophantine frequencies).

To transfer this “formal” knowledge at b = 0 to small values of |b| (and con-
sider for instance the smoothness of tongue boundaries) it is necessary to resort
to Eliasson’s reducibility theory. In this context, this reducibility theory [18, 22]
implies that when ω ∈ DC(c, τ) is Diophantine with constants c and τ and Q is real
analytic in some complex strip of width ρ, then for sufficiently small |a − ak| and
|b| the perturbed skew-product flow (Bδ,b, ω) is reducible to constant coefficients
provided the rotation number is either resonant with respect to ω or Diophantine
with respect to ω. The latter means that the rotation number rot(a, b) satisfies the
estimates

∣

∣

∣

∣

rot(a, b)− 〈k, ω〉
2

∣

∣

∣

∣

≥ K‖k‖−σ
1 , k ∈ Z

d − 0

for some constants K,σ > 0. This reducibility was used in [36] to prove analyticity
of tongue boundaries for |b| small, which together with the genericity of transver-
sality of tongue boundaries at b = 0 gives genericity of Cantor spectrum. Indeed,
once a tongue is open for some small value of b it can collapse at a particular value
of b but since tongue boundaries are analytic, such tongue tips are separated by
intervals of b where the tongue remains open.

In this perturbative context, it can also be shown that both the Lyapunov expo-
nent and the rotation number are Hölder- 1

2
[22], with square-root behavior at end-

points of open spectral gaps [7] and that the width of gaps decays sub-exponentially
according to the label [22].

2.3.2. Large a, b fixed. A second perturbative scenario occurs when a is large and
b is fixed because the system is close to a constant rotation with angle

√
a. Indeed,

let us take b fixed and consider (2.1) for a = α2 and α ≫ 0. The change of variables

w =

(

1 0
0 α

)

y

transforms (2.1) into

w′ =

[(

0 α
−α 0

)

− bQ (θ)

α

(

0 0
1 0

)]

w, θ′ = ω.

If b/α is small, the skew-product flow becomes a small quasi-periodic pertur-
bation of a fast rotation with angular velocity α. This approach was taken by
Dinaburg & Sinai [17] and further developed by Eliasson [18] to show that for a
large enough, the skew-product is reducible when the rotation number is either
resonant or Diophantine with respect to ω. The averaging approach for this fast
periodic forcing [39] works very well and one can obtain the asymptotics of the
rotation number and the Lyapunov exponent at +∞ [16] together with an estimate
on the decay of gap length [15]. In this real analytic setting, the rotation number
behaves as

√
a at +∞ and gap length decays exponentially.

The generic opening for small b is also transferred to this situation since there is
a global Lipschitz bound on tongue boundaries [7] which implies that for B fixed
and sufficiently large AB the skew-product flow at the boundaries of any tongue
in a > AB and |b| < B is reducible to constant coefficients and therefore has real
analytic boundaries.
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Both the situation for small |b| in Section 2.3.1 and large a and b fixed in Sec-
tion 2.3.2 will be referred as the reducible domain where, according to Eliasson
reducibility theory, skew-products whose rotation number is either Diophantine or
resonant with respect to ω are reducible to constant coefficients and, generically
the spectrum is a Cantor set with (again generically) all gaps open [18, 36]. It is
important to stress that this does not imply the reducibility for all values of (a, b)
in this domain [18] even if the Lyapunov exponent is zero on the domain. In fact,
as proved in [35], any subset of the spectrum with zero Lyapunov exponent which
is a Cantor set contains a Gδ subset of energies which are not reducible to constant
coefficients. In the reducible domain, however, this set of nonreducible energies has
always zero Lebesgue measure [18].

2.4. Outside the reducible domain. Even if in the reducible domain there are
generically values of a and b whose linear skew-product flows are not reducible
to constant coefficients, their Lebesgue measure is zero. Nevertheless, for a fixed
real analytic Q, Diophantine frequencies and b sufficiently large, there might be a
region at the bottom of the spectrum where the Lyapunov exponent is positive.
Hence the corresponding skew-products are nonuniformly hyperbolic and, thus,
nonreducible to constant coefficients. Inside the gaps in this region, though, the
system is reducible to constant coefficients (if Q is analytic and the frequencies are
Diophantine).

The first results in this direction were considered by Frölich et al. [20] in the case
of the potential with two frequencies given by (1.4) when b is large and γ is any
Diophantine frequency. More precisely they show that if b is sufficiently large, there
is an interval with a nonvoid intersection with the spectrum where the spectrum
is pure-point with exponentially localized eigenfunctions for almost every phase.
The existence of such eigenfunctions for almost all phases, which are solutions of
the eigenvalue equation (1.2) decaying exponentially at −∞ and +∞ and hence
belonging to L2(R), is referred as Anderson localization and implies positivity of
the Lyapunov exponent.

The positivity of the Lyapunov exponent at the bottom of the spectrum was
generalized by Bjerklöv [3] who considered real analytic potentials Q : Td → R and
Diophantine frequencies. For sufficiently large b it was shown that on the interval
[0, b

2

3 ] the Lyapunov exponent is greater than c0
√
b where c0 is a positive constant

depending only on Q and this interval contains energies in the spectrum, provided
that b is sufficiently large.

The picture for the Lyapunov exponent is thus the following in this real analytic
context: for small values of b the whole spectrum is included in the reducible
domain but for a critical value of b, the Lyapunov exponent for the lowest energy
in the spectrum (which is the largest energy a with zero rotation number) becomes
positive. As b grows, bigger portions at the bottom of the spectrum turn to have
positive Lyapunov exponent whereas larger energies a are in the reducible domain
(see Section 2.3.2). For large b, thus, the system undergoes a dramatic transition
when a goes to infinity. Previous numerical work on the model (1.4) indicates that
there is a critical curve in the (a, b)-plane where the Lyapunov exponent becomes
positive. Interestingly in [8] it was observed that nearby resonance tongues seem to
cluster around when they cross this curve and that the set of values on the critical
curve which are outside resonance tongues has zero Lebesgue measure, see Section
4 and also the discrete case in [37].
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Very little is known about the structure of the spectrum in the region of positive
Lyapunov exponents. A little bit more is known for discrete Schrödinger operators
on l2(Z),

(2.8) (HbV,φx)n = xn+1 + xn−1 + bV (ωn+ φ)xn, n ∈ Z ,

where V : Td → R is a potential, d ≥ 1 and ω = (ω1, . . . , ωd) ∈ Rd is an irrational
frequency vector in the sense that

〈k, ω〉 = k1ω1 + . . .+ kdωd 6∈ 2πZ for all k = (k1, . . . , kd) ∈ Z
d \ {0}.

Most of the definitions given for the continuous case also apply in this discrete
context. A difference with the continuous case, however, is that here the spectrum
is always a compact subset of R and if V is real analytic and the frequencies
Diophantine, the Lyapunov exponent is always positive on the whole spectrum for
sufficiently large b (see the review and references in [26]).

In the discrete case, when b is large and there is a single Diophantine frequency,
the spectrum is a Cantor set [41, 21, 23] although it was numerically observed in
[37] that when the potential has several maxima and minima a number of gaps can
collapse in a non-smooth way in this domain.

The situation in the discrete case with two or more frequencies (which corre-
sponds to the continuous case with three or more frequencies) is very different in
the regime of positive Lyapunov exponents, as indicated by work by Chulaevsky
and Sinai [10]. More precisely, for |b| large enough and “non-degenerate” potentials
the spectrum might consist of a single spectral band without any gap. This phe-
nomenon of gap closing was numerically studied in [37] for several examples, as it
will be done for the continuous case in Section 4.

3. Numerical methods

To compute numerically both Lyapunov exponents and rotation numbers we
must integrate x′′ + p(t)x = 0 or, as a system,

(3.1) x′ = −y, y′ = p(t)x,

where p(t) = a+q(t). It is quite convenient to use Taylor methods (see, e.g. [30] and
references therein, and also the lecture notes in [40] which discuss when the method
is suitable and display several examples). As q(t) = cos(θ1) + cos(θ2) + cos(θ3),
where θj = ωjt, the jet to any order of p(t) contains coefficients bωk

j /k! which can
be precomputed for fixed b. The computational cost per step using order N is of
the form a0 + a1N +N2, measured in elementary operations (+,*), in the present
case, and the first two terms can not be neglected in front of N2. This implies that
the optimal order is large. Setting the local truncation error to 10−21, so that it
can be neglected in front of the roundoff errors, the optimal order has been found
to be near N = 40 and this value has been used for all the computations, carried
out in double precision.

Different computers have been used, but to have a performance idea, running
under Linux on a laptop at 1.86GHz produces 200,000 integration steps per second,
with an average step size near π/4, in the explored domain.

As an additional check the fundamental matrix X(t) associated to (3.1) with
X(0) = I has been computed for values of (a, b) with zero Lyapunov exponent, like
(4, 1). The values of det(X)− 1 can be used to check the accuracy of the solutions.
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Figure 1. Errors in det(X(t)) − 1, where X is a fundamental
matrix of the Equation (1.1) with X(0) = I. Time is displayed on
the horizontal axis. In this example the values (a, b) = (4, 1) have
been used.

A typical random walk behavior is obtained, as can be seen in Figure 1. After this
check we only integrate (3.1).

As ω1 = 1 we can consider the discrete map associated to one revolution of θ1,
i.e. passages of θ1 through multiples of 2π. For the subsequent computations the
Lyapunov exponent has been computed taking 2π as unit of time. Let a variable L
be initially set to zero. Starting with the initial vector (1, 0)T let v(1) be the vector
obtained after one revolution. Then L is updated by adding to it log(|v(1)|2), v is
normalized by replacing it by v(1)/|v(1)|2 and the computation is continued. Let
us denote as Lyapunov sums Ln the values of L as a function of the number of
revolutions n. The Lyapunov exponent can be computed as the slope of a linear fit
of the values of Ln as a function of n up to a maximal value Nmax.

In fact, both to reduce the size of the sample and to smoothen a little the
behavior of Ln, one keeps only for the fit values of n for which the variables θ2, θ3
are close to zero modulus 2π. This criterion is close to the “right stop criterion”
used in [11] to compute Lyapunov exponents in a general setting, and interesting
characteristics will be commented later.

Concerning the rotation number, one can proceed in a similar way by doing fits
of Sn as a linear function of n, where Sn is half the number of crossings of the y
component of the vector through y = 0 in the positive sense, which is equivalent
to the definition given in Section 2.2. Note that as p(t) can be negative, changes of
sign in the reverse sense can occur.

To illustrate the difficulties associated to the lack of reducibility, Figure 2 shows
the oscillations of Ln and Sn with respect to the fits in a moderate domain of n. The
figure suggests that one has to use large values of N to obtain accurate estimates
of the Lyapunov exponent and the rotation number. Typical values of Nmax in the
computations range in [105, 106]. For some details larger values, even exceeding 109,
have been used. The computed values are very accurate in the reducible domains.
Hence, to avoid exceedingly long computations, for a sequence of increasing values
of N (say, of the form N = k×N∗, k ≥ 5) we have computed the slopes of Ln and
Sn using the last 60%, 40% and 20% of the data. Let sL60, s

L
40, s

L
20 and sS60, s

S
40, s

S
20
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be the values obtained. As done in [37] the computation has been stopped if

max{|sL60 − sL40|, |sL40 − sL20|} and max{|sS60 − sS40|, |sS40 − sS20|}
are less than some prescribed tolerance, typically taken as 1/Nmax. Then the values
sL40 and sS40 are used as suitable estimates. Otherwise the computation continues
until N = Nmax.

-40

-20

 0

 20

 40

 5e5  6e5  7e5  8e5  9e5  1e6

-6

-3

 0

 3

 6

 5e5  6e5  7e5  8e5  9e5  1e6

Figure 2. Evolution of the Lyapunov sums Ln (left) and of half
the number of changes of sign of y, Sn, (right) having subtracted
the linear fit, as a function of the number of revolutions n of θ1, in
the interval [5×105, 106]. The values (a, b) = (0, 1) have been used.

In the figures displayed in Section 4 one has used a step in a, along lines of
constant b, equal to 0.005 for the larger domains (Figure 5). The step is reduced
to 10−3, 10−5 and 10−4 for details in Figures 6, 7 and 8, respectively. The zones
with resonant rotation number or the ones with zero Lyapunov exponent (e.g., in
Figures 5 to 8) display the pixels for which the related condition is satisfied. When
from one pixel to next one a resonance is crossed the corresponding value of a is
obtained by interpolation, but keeping only resonances up to order m, |k|1 ≤ m,
for different values of m, to avoid having too many lines.

4. Results

For the numerical exploration we considered equation (1.5),

x′′ +
(

a+ b
(

cos t+ cos
√
2t+ cos

√
3t
))

x = 0,

whose frequency vector ω = (1,
√
2,
√
3) is Diophantine. We computed numerically

the rotation number and the Lyapunov exponent for large sets of (a, b) values. See
Figures 3 and 4 for preliminary illustrations.

The two regimes which were described in sections 2.3 and 2.4 are detected in
terms of the Lyapunov exponent and the rotation number. Indeed, when the Lya-
punov exponent is positive outside the resonance tongues, the system is nonuni-
formly hyperbolic and there is no reducibility to constant coefficients. This is
clearly seen in Figure 5 bottom which displays the subset in the (a, b)-parameter
plane where the Lyapunov exponent is zero and the rotation number is not reso-
nant with respect to ω (see the caption for more details). This domain contains the
whole spectrum for small values of b and a subset for large a once b has been fixed.
It is reasonable to believe that the reducible domain (i.e. where skew-products are
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 0

 0.5

 1

 1.5

 2

 2.5

 3

 0
 2

 4
 6

 8

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Figure 3. An illustration of the behavior of the Lyapunov ex-
ponent, computed as a time average, for a ∈ [−1, 9], b ∈ [0.1, 4].
Final time 106.

reducible to constant coefficients for almost all rotation number) is given by this
shaded region where the Lyapunov exponent is zero. This belief is consistent with
results in the discrete case [2] and its validation would imply that, in this region,
the skew-products are reducible for Lebesgue almost every value of a, while keeping
b fixed [14, 2].

In the regime of zero Lyapunov exponents (which includes the whole spectrum
for b less than 0.183, see the tip of the leftmost zero-Lyapunov domain in Figure 5
bottom), everything is as predicted by the perturbative theory of Section 2.3:

• The Lyapunov exponent and the rotation number are Hölder- 1
2
and have

square-root behavior at the endpoints of open gaps (see the right-most part
of Figure 4 for b = 0.5).

• The order of contact of the k-th tongue at b = 0 for this particular equa-
tion is exactly ‖k‖1 and, in particular, only the tongues with rotation num-

ber 1/2,
√
2/2 and

√
3/2, which emanate from a = 1/4, 1/2 and 3/4 are

transversal at b = 0. In [7] it was shown that, in the present situation
of an equation like (1.5), this order is at least ‖k‖1 and that for almost
all frequencies it is exactly this value. When the Lyapunov exponent at
tongue boundaries is zero, these boundaries look very smooth, which is
consistent with the fact that they are real analytic functions of b whenever
the skew-product is reducible at a tongue boundary [36].

• All computed tongues open at b = 0 (with different orders according to
their label) and they do not show any instability pocket if the Lyapunov
exponent is zero at the boundaries of the tongue (inside it will always be
positive due to the presence of an exponential dichotomy). In particular,
they remain open for all small values of b and the spectrum is a Cantor
set with all spectral gaps open. The same happens for large values of a
and b fixed. Note that the absence of instability pockets in the reducible
domain is a very particular feature of this model since they are produced
by a generic perturbation [7].
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 0
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Figure 4. Top: Values of the rotation number for a ∈ [−2, 2].
The four curves correspond to values of b equal to 0.5, 1.0, 1.5, 2.0.
For a = −1, for instance, the curves are ordered as the values
of b. The three horizontal lines correspond to rotation numbers
1/2,

√
2/2 and

√
3/2. The bottom plot displays the results for the

Lyapunov exponent, as fitted slope with respect to the number of
revolutions of θ1. For a = 0.5 the curves are ordered as the values
of b.

As seen in Figure 5 when b grows (when it crosses the value b ≈ 0.183) the
Lyapunov exponent becomes positive in a compact subset at the bottom of the
the spectrum. We can speak of a “critical line” which starts at the bottom of the
spectrum when b ≈ 0.183 and divides the parameter space into the nonuniformly
hyperbolic region (at the left-hand side or at the top of the curve) and the reducible
domain at the right (or at the bottom). This curve was already numerically observed
in the model (1.4) with two frequencies [8] and plays the same role as the line
b = 2 in the Almost Mathieu case, which is the discrete model (2.8) obtained when
V (θ) = cos θ. Evidences of that critical line can be seen also in the magnifications
in Figure 6 and in the highly detailed Figure 8 (where we use 9000× 1500 pixels).
Another common feature of our present model with the former is that along this
critical line the width of resonance tongues seems to attain its maximum value and
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Figure 5. Top: Values of (a, b) for which the rotation number
is resonant, see text for details. Only lines with resonances up to
order 4 outside the wide resonant zones are displayed. Bottom:
Values of (a, b) for which the Lyapunov exponent is zero.

nearby resonance tongues cluster so that the measure of values (a, b) along this
curve which lie outside tongues seems to be zero.

In the nonuniformly hyperbolic domain, the situation is substantially different
from that of two frequencies. Indeed, in the case of two frequencies of (1.4) the
numerical exploration of [8] showed that tongues start shrinking after they cross
the critical curve, but they remain always open for larger values of b in the explored
domain. In the present case with three frequencies, Figure 5 shows that tongues
do shrink when they cross the critical curve but at some height of b they have a
pocket which does not reopen after the tip. This can already be guessed in Figure
4 where the resonances associated to rotation numbers 1/2,

√
2/2 and

√
3/2 are

related to plateaux for b = 0.5. The first two have disappeared already for b = 1
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Figure 6. Magnification of Figure 5 top. Here we include reso-
nances up to order 8 in the displayed domain.

 0.90

 0.91

-0.15 -0.14

 0.86

 0.87

 0.88

 0.520  0.525

 1.57

 1.58

 1.59

 0.93  0.94

Figure 7. From left to right: magnifications of the end tips of the
resonances with k equal to (1, 0, 0), (0, 1, 0) and (0, 0, 1), respec-
tively. They can be seen as the first three large resonant domains
in Figure 5, letting aside the k = 0 resonant domain. After the tip
only one value of a has been found to have the resonant rotation
number for each b.

and the last one has disappeared for b = 2. It is also clearly seen in Figure 6 and
in the magnifications of Figure 7 which display the tip for these tongues. After
the tongue closes it does not reopen again and larger values of b have a collapsed
gap corresponding to that rotation number. This phenomenon will be denoted as
persistent gap closing as it is different from the type of gap closing, not persistent,
that occurs in the reducible domain. At the point of collapse of a resonance tongue,
gap length tends to zero linearly.

As a consequence, as b grows, the bottom of the spectrum contains a spectral
band, to the left of a given value of a depending on b, which is very different from the
spectral bands that appear in the periodic Hill equation. Because the topmost part
of the spectrum lies in the reducible domain and there is Cantor spectrum there,
we face an example of an spectrum with coexisting spectral bands and portions
with Cantor spectrum.
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Once a tongue crosses to the nonuniformly hyperbolic domain, its boundaries
may not be smooth. A clear example occurs at the magnifications around the
persistent gap closing in Figure 7, where the curve with fixed rotation number that
survives in the (a, b)-plane after the collapse does not seem to have the direction
of any of the two boundaries at the point of collapse, neither the average of the
two slopes. Before the collapse, where the tongue is still open, there can also be
values of b where a boundary is not smooth. This can be seen in Figure 6 where
the tongue with rotation number

√
3/2 has a singularity of this kind for b around

1.4 at the right endpoint. After the tongue has collapsed, the surviving curve may
also have points where it is not smooth. This lack of smoothness was also observed
for the discrete models in [37] with two and more frequencies (which correspond
to continuous models with three and more frequencies). Figure 8 shows a further
magnification of Figure 6 where one can see a better detail of the critical line and
several addicional collapsed tongues for small values of b.1

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6

Figure 8. Magnification of Figure 6 using steps 10−4, 2× 10−4 in
a, b. Here we include lines with resonances up to order 12 in the
displayed domain. In the wider resonant zones the highest order
detected is 76.

Concerning the behavior of the rotation number and the Lyapunov exponent in
the nonuniformly hyperbolic domain, both the rotation number and the Lyapunov
exponent seem to have one-sided derivatives at the endpoint of the surviving open
spectral gaps, see Figure 4, contrary to the observed square-root behavior in the
reducible domain. Moreover, inside a spectral band with positive Lyapunov expo-
nent, the rotation number seems to have points with different derivatives from the
left and the right.

The behavior of the Lyapunov sums Ln and the rotation sums Sn, as introduced
in Section 3 is strongly dependent on the reducibility of the system. When the
skew-product is reducible to constant coefficients, the Floquet representation (2.3)
implies that the differences between Sn and n times the final rotation number will

1Contact the authors for even larger magnifications with steps 10−5, 10−4, or smaller, in a, b.
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Figure 9. Plots like the ones displayed in Figure 2 on the interval
[0, 5× 108].
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Figure 10. Plots like the ones displayed in Figure 2 on the interval
[0, 5× 109].

be bounded and the same happens with the Lyapunov exponent. In the nonuni-
formly hyperbolic domain, where there is no reducibility to constant coefficients,
the differences need not to be bounded, see Figure 12 and related comments. This
seems to be related to the concept of ρ-boundness for quasi-periodically forced circle
maps [4].

In Figure 9, for a final time 109, we display the differences between the sums
and the linear fits as a function of the number of revolutions of θ1. We see that the
oscillations are wild, but one can distinguish many peaks, more clearly in the case
of Ln in this figure. Figure 10 shows that both pictures look more similar if the
final time goes to 5× 109. We note that, roughly, only one point every 105 points
is shown. It is interesting to try to identify the reason of the peaks. To this end
one has selected different minor domains, giving slightly different estimates of the
slopes, and giving evidence of peaks with different spacings.

It seems natural to check for the “quasi-periods” of the function Q. Given ε > 0
we can look for values of k ∈ N such that Q is close to be periodic with period
2πk. As we consider revolutions when θ1 = 0 mod 2π, it is enough to look for
the values of θ2, θ3 after every revolution of θ1. To this end we can select values
of k such that the distance of k(ω2, ω3) to Z2, measured by the Euclidean norm
dk is smaller than the given ε. The “best” values are obtained for the k such
that dk < min{dj, 0 < j < k}. This is related to the problem of simultaneous
Diophantine approximation (SDA). Table 1 gives some of the values of k for which
this condition is satisfied, as well as the related value of dk. Figure 11 shows the
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Figure 11. The values of dk for the values of k as defined in Table
1 for all k < 1011. The large dots correspond to quasi-periods
detected in Figures 2, 9, 10 and similar ones (not displayed in the
paper) at different scales. The values on the axes correspond to
log10(k) and log10(dk).

values of k ≤ 1012 for which this condition holds. In the figure, log10 scales are used
in both axes and the two straight lines are −x/2 and −x/2−1, where x denotes here
the horizontal variable. The general trend is a decrease of the form dk = O(k−1/2),
in agreement with classical results on SDA (see, e.g., [34]).

7 0.1598924517345656E 0 326491 0.2879886604030898E-3
41 0.2226404176161304E-1 2151016 0.1340612832092896E-3

1463 0.1115233301766352E-1 26963149 0.9994228251808058E-4
4109 0.4784264961464025E-2 78411940 0.4480247193528474E-4
20586 0.2112644427660709E-2 447810523 0.1417064795288236E-4

Table 1. Euclidean norm dk of the distance of (kω2, kω3) to Z2

for some of the values of k for which dk < min{dj, 0 < j < k}.
Left columns: values of k; right columns: values of dk. The values
shown here are the ones which appear as large dots in Figure 11.

It turns out that some of the values of k correspond to the distances between
peaks seen in plots like the ones displayed in Figures 2, 9, 10 and similar ones (not
displayed for shortness). These values appear in Figure 11 as large dots.

Finally one can turn the attention to the behavior of the maximal values of the
differences between Ln and the linear fit, as a function of the maximal value Nmax

of n which is used in the computations. A similar question can be posed for Sn. As
it is expected these differences stabilise in the reducible case as mentioned before.
As a matter of fact, for a number of tests done up to Nmax = 109, they stabilise at
small values. The behavior is quite different in the nonreducible case.

Figure 12 displays these differences for the Lyapunov sums, several values ofNmax

and values of a equal to 0, 0, 0.5 and 1.5 while keeping b = 1 fixed (a = 1, a = 2 show
a reducible character for the same value of b). The patterns are quite similar in the
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Figure 12. Maximal absolute value of the differences between the
Lyapunov sums Ln and the linear fits, as a function of the number
of revolutions of θ1, up to a maximum of N revolutions for different
values of N , of the form N = E(105 × 10j/10) for j = 0, . . . , 40. In
the horizontal axis we display log10(N). For b = 1 the red, green
and blue curves correspond to a = 0.0, 0.5 and 1.5, respectively.
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Figure 13. Let ρN be the value of the rotation number estimated
as the slope of a linear fit of Sn, n ≤ N (see Figure 2). The plot
shows log10 |ρN −ρN0

| as a function of log10(N) for different values
ofN when one takesN0 = 5×109. For that computation the values
(a, b) = (0, 1) have been used. The blue curve has slope −3/4, very
close to the slope of a linear fit of these data.

three cases. The same occurs if Ln are replaced by Sn showing an increasing trend
with sudden jumps at slightly different places. Jumps that seem to be related to
the values of k are shown in Table 1. The range of Nmax, even reaching 109, seems
still too short to draw conclusions about the rate of increase. In an alternative
way we have proceeded as follows. Let ρN be the value of the rotation number
estimated as the slope of a linear fit of Sn, n ≤ N . Let us take as “more correct
estimate” ρN0

the value obtained for N0 = 5 × 109. Figure 13 shows the behavior
of log10 |ρN − ρN0

| as a function of log10 N . As one can expect larger values of N
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produce values closer to ρN0
, despite large irregularities showing up. A linear fit

of these data gives a slope −0.752 and the line drawn on the plot has slope −0.75.
One could be tempted to take the value −0.75 as the correct one, but many longer
explorations have to be done before drawing conclusions.
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