18 research outputs found

    Multiple Scattering X-ray Photoelectron Diffraction Study Of The Srtio 3 (100) Surface

    Get PDF
    The atomic surface structure of SrTiO3 (100) after annealing at 630 °C in vacuum is investigated by x-ray photoelectron diffraction (XPD) using the Sr 3 d5/2 core level. The photoelectron diffraction peaks are successfully assigned by considering the forward scattering of photoelectrons by the atomic potential near the emitter atom in the lattice. The strongest diffraction peaks are aligned along the single crystal internuclear axes. We compare the results of photoelectron multiple scattering calculations (MSC) of SrO and TiO2 terminated SrTiO3 (100) surfaces, including surface relaxation and rumpling, with the experimental data. For TiO2 and SrO terminated SrTiO3 (100) surfaces, all top-layer cations relax inward, whereas second-layer atoms relax outward. The surface rumpling for SrO- and TiO2 -terminated surfaces agrees well with low-energy electron diffraction results. Using a genetic algorithm the best agreement of MSC to the experimental XPD data is obtained for a SrO terminated surface with a 30% coverage of 3 ML SrO(100) islands. © 2009 American Institute of Physics.1063Rijnders, G., Curras, S., Huijben, M., Blanck, D., Rogalla, H., Kotecki, D.E., Baniecki, J.D., Wise, R., (2004) Appl. Phys. Lett., 84, p. 1150. , 0003-6951, () 10.1063/1.1646463;, IBM J. Res. Dev. 0018-8646 43, 367 (1999)Kawasaki, M., Ohtomo, A., Arakane, T., Takahashi, K., Yoshimoto, M., Koinuma, H., Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides (1996) Applied Surface Science, 107, pp. 102-106. , DOI 10.1016/S0169-4332(96)00512-0, PII S0169433296005120Erdman, N., Marks, L.D., (2003) Surf. Sci., 526, p. 107. , 0039-6028,. 10.1016/S0039-6028(02)02573-6Kubo, T., Nozoye, H., (2001) Phys. Rev. Lett., 86, p. 1801. , 0031-9007,. 10.1103/PhysRevLett.86.1801Szot, K., Speier, W., Breuer, U., Meyer, R., Szade, J., Waser, R., (2000) Surf. Sci., 460, p. 112. , 0039-6028,. 10.1016/S0039-6028(00)00522-7Gunhold, A., Gomann, K., Beuermann, L., Frerichs, M., Borchardt, G., Kempter, V., Maus-Friedrichs, W., Geometric structure and chemical composition of SrTiO3 surfaces heated under oxidizing and reducing conditions (2002) Surface Science, 507-510, pp. 447-452. , DOI 10.1016/S0039-6028(02)01284-0, PII S0039602802012840Szot, K., Speier, W., (1999) Phys. Rev. B, 60, p. 5909. , 0163-1829,. 10.1103/PhysRevB.60.5909Castell, M.R., Nanostructures on the SrTiO3(0 0 1) surface studied by STM (2002) Surface Science, 516 (1-2), pp. 33-42. , DOI 10.1016/S0039-6028(02)02053-8, PII S0039602802020538Ruddlesden, S.N., Popper, P., (1958) Acta Crystallogr., 11, p. 54. , 0907-4449,. 10.1107/S0365110X58000128Liang Yong, Bonnell Dawn, A., Atomic structures of reduced SrTiO3(001) surfaces (1993) Surface Science, 285 (3), pp. L510-L516. , DOI 10.1016/0039-6028(93)90422-GHenrich, V.E., Dresselhaus, G., Zeiger, H.J., (1978) Phys. Rev. B, 17, p. 4908. , 0163-1829,. 10.1103/PhysRevB.17.4908Matsumoto Takuya, Tanaka Hiroyuki, Kawai Tomoji, Kawai Shichio, STM-imaging of a SrTiO3(100) surface with atomic-scale resolution (1992) Surface Science, 278 (3), pp. L153-L158. , DOI 10.1016/0039-6028(92)90659-THaruyama, Y., Fukutani, H., Aiura, Y., Nishihara, Y., Komeda, T., Kodaira, S., Maryama, T., Kato, H., (1993) Jpn. J. Appl. Phys., Suppl., 32, p. 543. , 10.1143/JJAP.32.L543Hirata, A., Saika, K., Koma, A., Ando, A., (1994) Surf. Sci., 319, p. 267. , 0039-6028,. 10.1016/0039-6028(94)90593-2Zagonel, L.F., Barrett, N., Renault, O., Bailly, A., BĂ€urer, M., Hoffmann, M., Shih, S.-J., Cockayne, D., (2008) Surf. Interface Anal., 40, p. 1709. , 0142-2421,. 10.1002/sia.2886Szot, K., Speier, W., Herion, J., Freiburg, C., (1997) Appl. Phys. A: Mater. Sci. Process., 64, p. 64. , 0947-8396Fompeyrine, J., Berger, R., Lang, H.P., Perret, J., Machler, E., Gerber, Ch., Locquet, J.-P., Local determination of the stacking sequence of layered materials (1998) Applied Physics Letters, 72 (14), pp. 1697-1699. , DOI 10.1063/1.121155, PII S0003695198019147Padilla, J., Vanderbilt, D., (1998) Surf. Sci., 418, p. 64. , 0039-6028,. 10.1016/S0039-6028(98)00670-0Cheng, C., Kunc, K., Lee, M.H., Structural relaxation and longitudinal dipole moment of SrTiO 3(001)(1 × 1) surfaces (2000) Physical Review B - Condensed Matter and Materials Physics, 62 (15), pp. 10409-10418. , DOI 10.1103/PhysRevB.62.10409Heifets, E., Kotomin, E.A., Maier, J., Semi-empirical simulations of surface relaxation for perovskite titanates (2000) Surface Science, 462 (1), pp. 19-35. , DOI 10.1016/S0039-6028(00)00603-8Bickel, N., Schmidt, G., Heinz, K., Muller, K., (1989) Phys. Rev. Lett., 62, p. 2009. , 0031-9007,. 10.1103/PhysRevLett.62.2009Hikita Tokihisa, Hanada Takashi, Kudo Masahiro, Kawai Maki, Structure and electronic state of the TiO2 and SrO terminated SrTiO3(100) surfaces (1993) Surface Science, 287 (88 PART A), pp. 377-381. , DOI 10.1016/0039-6028(93)90806-UIkeda, A., Nishimura, T., Morishita, T., Kido, Y., Surface relaxation and rumpling of TiO2-terminated SrTiO 3(001) determined by medium energy ion scattering (1999) Surface Science, 433, pp. 520-524. , DOI 10.1016/S0039-6028(99)00050-3Charlton, G., Brennan, S., Muryn, C.A., McGrath, R., Norman, D., Turner, T.S., Thornton, G., Surface relaxation of SrTiO3(001) (2000) Surface Science, 457 (1), pp. L376-L380. , DOI 10.1016/S0039-6028(00)00403-9Bottin, F., Finocchi, F., Noguera, C., (2003) Phys. Rev. B, 68, p. 035418. , 0163-1829,. 10.1103/PhysRevB.68.035418Eglitis, R.I., Vanderbilt, D., (2008) Phys. Rev. B, 77, p. 195408. , 0163-1829,. 10.1103/PhysRevB.77.195408Herger, R., Willmott, P.R., Bunk, O., SchlepĂŒtz, C.M., Patterson, B.D., Delley, B., Shneerson, V.L., Saldin, D.K., (2007) Phys. Rev. B, 76, p. 195435. , 0163-1829,. 10.1103/PhysRevB.76.195435Chen, Y., Hove, M.V., (1998), http://www.ap.cityu.edu.hk/personal-website/Van-Hove_files/mscd/mscdpack. html, MSCD Package, Lawrence Berkeley National LaboratoryPasierb, P., Komornicki, S., Rekas, M., Comparison of the chemical diffusion of undoped and Nb-doped SrTiO 3 (1999) Journal of Physics and Chemistry of Solids, 60 (11), pp. 1835-1844. , DOI 10.1016/S0022-3697(99)00193-6De Siervo, A., Soares, E.A., Landers, R., Kleiman, G.G., Photoelectron diffraction studies of Cu on Pd(111) random surface alloys (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (11), pp. 1-7. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PRBMDO000071000011115417000001&idtype=cvips, DOI 10.1103/PhysRevB.71.115417, 115417Mitchell, R.H., Chakhmouradian, A.R., Woodward, P.M., Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr(1-2x)Na(x)La(x))TiO3 (2000) Physics and Chemistry of Minerals, 27 (8), pp. 583-589. , DOI 10.1007/s002690000103http://www.qivx.com, From the Integral Scientist Periodic Table of the Elements (ISPT), available onPendry, J., (1980) J. Phys C, 13, p. 937. , 10.1088/0022-3719/13/5/024 0081-1947Bondino, F., Comelli, G., Baraldi, A., Rosei, R., Lizzit, S., Goldoni, A., Larciprete, R., Paolucci, G., (2002) Phys. Rev. B, 66, p. 075402. , 0163-1829,. 10.1103/PhysRevB.66.075402Van Hove, M., Moritz, W., Over, H., Rous, P., Wander, A., Barbieri, A., Materer, N., Somorjai, G., (1993) Surf. Sci. Rep., 19, p. 191. , 0167-5729,. 10.1016/0167-5729(93)90011-DViana, M.L., Muio, R.D., Soares, E.A., Van Hove, M.A., De Carvalho, V.E., Global search in photoelectron diffraction structure determination using genetic algorithms (2007) Journal of Physics Condensed Matter, 19 (44), p. 446002. , DOI 10.1088/0953-8984/19/44/446002, PII S095389840753354

    Heat to Electricity Conversion by a Graphene Stripe with Heavy Chiral Fermions

    Full text link
    A conversion of thermal energy into electricity is considered in the electrically polarized graphene stripes with zigzag edges where the heavy chiral fermion (HCF) states are formed. The stripes are characterized by a high electric conductance Ge and by a significant Seebeck coefficient S. The electric current in the stripes is induced due to a non-equilibrium thermal injection of "hot" electrons. This thermoelectric generation process might be utilized for building of thermoelectric generators with an exceptionally high figure of merit Z{\delta}T \simeq 100 >> 1 and with an appreciable electric power densities \sim 1 MW/cm2.Comment: 8 pages, 3 figure

    Photocatalytic Hydrogen Production Of Co(oh)2 Nanoparticle-coated α-fe2o3 Nanorings

    Get PDF
    The production of hydrogen from water using only a catalyst and solar energy is one of the most challenging and promising outlets for the generation of clean and renewable energy. Semiconductor photocatalysts for solar hydrogen production by water photolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers capable of harvesting light photons with adequate potential to reduce water. Here, we show that α-Fe 2O3 can meet these requirements by means of using hydrothermally prepared nanorings. These iron oxide nanoring photocatalysts proved capable of producing hydrogen efficiently without application of an external bias. In addition, Co(OH)2 nanoparticles were shown to be efficient co-catalysts on the nanoring surface by improving the efficiency of hydrogen generation. Both nanoparticle-coated and uncoated nanorings displayed superior photocatalytic activity for hydrogen evolution when compared with TiO2 nanoparticles, showing themselves to be promising materials for water-splitting using only solar light. © The Royal Society of Chemistry 2013.51993109316Navarro Yerga, R.M., Álvarez Galvån, M.C., Del Valle, F., Villoria De La Mano, J.A., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Fujishima, A., Honda, K., (1972) Nature, 238, pp. 37-38Kudo, A., Miseki, Y., (2009) Chem. Soc. Rev., 38, pp. 253-278Sivula, K., Le Formal, F., Gratzel, M., (2011) ChemSusChem, 4, pp. 432-449Yerga, R.M.N., Galvan, M.C.A., Del Valle, F., De La Mano, J.A.V., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Chen, X.B., Shen, S.H., Guo, L.J., Mao, S.S., (2010) Chem. Rev., 110, pp. 6503-6570Hernandez-Alonso, M.D., Fresno, F., Suarez, S., Coronado, J.M., (2009) Energy Environ. Sci., 2, pp. 1231-1257Kudo, A., (2003) Catal. Surv. Asia, 7, pp. 31-38Wender, H., Feil, A.F., Diaz, L.B., Ribeiro, C.S., Machado, G.J., Migowski, P., Weibel, D.E., Teixeira, S.R., (2011) ACS Appl. Mater. Interfaces, 3, pp. 1359-1365Khan, S.U.M., Al-Shahry, M., Ingler, W.B., (2002) Science, 297, pp. 2243-2245Sreethawong, T., Ngamsinlapasathian, S., Suzuki, Y., Yoshikawa, S., (2005) J. Mol. Catal. A: Chem., 235, pp. 1-11Li, Z.H., Chen, G., Tian, X.J., Li, Y.X., (2008) Mater. Res. Bull., 43, pp. 1781-1788Meng, F.K., Hong, Z.L., Arndt, J., Li, M., Zhi, M.J., Yang, F., Wu, N.Q., (2012) Nano Res., 5, pp. 213-221Pei, D.H., Luan, J.F., (2012) Int. J. Photoenergy, , 10.1155/2012/262831Sun, J.W., Liu, C., Yang, P.D., (2011) J. Am. Chem. Soc., 133, pp. 19306-19309Nann, T., Ibrahim, S.K., Woi, P.M., Xu, S., Ziegler, J., Pickett, C.J., (2010) Angew. Chem., Int. Ed., 49, pp. 1574-1577Higashi, M., Domen, K., Abe, R., (2011) Energy Environ. Sci., 4, pp. 4138-4147Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., Domen, K., (2011) J. Am. Chem. Soc., 133, pp. 12334-12337Ikeue, K., Shiiba, S., Machida, M., (2011) ChemSusChem, 4, pp. 269-273Yu, J.G., Yang, B., Cheng, B., (2012) Nanoscale, 4, pp. 2670-2677Yashima, M., Ogisu, K., Domen, K., (2008) Acta Crystallogr., Sect. B: Struct. Sci., 64, pp. 291-298Yan, Q., Zhu, J., Yin, Z., Yang, D., Sun, T., Yu, H., Hoster, H.E., Zhang, H., (2013) Energy Environ. Sci., 6 (3), pp. 987-993Tahir, A.A., Wijayantha, K.G.U., Saremi-Yarahmadi, S., Mazhar, M., McKee, V., (2009) Chem. Mater., 21, pp. 3763-3772Rangaraju, R.R., Panday, A., Raja, K.S., Misra, M., (2009) J. Phys. D: Appl. Phys., 42Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., Dass, S., (2008) Int. J. Hydrogen Energy, 33, pp. 312-318Saremi-Yarahmadi, S., Vaidhyanathan, B., Wijayantha, K.G.U., (2010) Int. J. Hydrogen Energy, 35, pp. 10155-10165Lin, Y., Xu, Y., Mayer, M.T., Simpson, Z.I., McMahon, G., Zhou, S., Wang, D., (2012) J. Am. Chem. Soc., 134, pp. 5508-5511Kumar, P., Sharma, P., Solanki, A., Tripathi, A., Deva, D., Shrivastav, R., Dass, S., Satsangi, V.R., (2012) Int. J. Hydrogen Energy, 37, pp. 3626-3632Kronawitter, C.X., Vayssieres, L., Shen, S.H., Guo, L.J., Wheeler, D.A., Zhang, J.Z., Antoun, B.R., Mao, S.S., (2011) Energy Environ. Sci., 4, pp. 3889-3899Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., Guo, J.H., (2005) Adv. Mater., 17, pp. 2320-2323Jia, C.-J., Sun, L.-D., Luo, F., Han, X.-D., Heyderman, L.J., Yan, Z.-G., Yan, C.-H., Raabe, J.R., (2008) J. Am. Chem. Soc., 130, pp. 16968-16977De La Peña, F., Barrett, N., Zagonel, L.F., Walls, M., Renault, O., (2010) Surf. Sci., 604, pp. 1628-1636De La Peña, F., Berger, M.H., Hochepied, J.F., Dynys, F., Stephan, O., Walls, M., (2011) Ultramicroscopy, 111, pp. 169-176Chen, S.-Y., Gloter, A., Zobelli, A., Wang, L., Chen, C.-H., Colliex, C., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 104103Gonçalves, R.V., Migowski, P., Wender, H., Eberhardt, D., Weibel, D.E., Sonaglio V. F, C., Zapata, M.J.M., Teixeira, S.R., (2012) J. Phys. Chem. C, 116, pp. 14022-14030Zhao, Y., Feltes, T.E., Regalbuto, J.R., Meyer, R.J., Klie, R.F., (2010) J. Appl. Phys., 108, pp. 063704-063707Zhang, Z., (2007) Ultramicroscopy, 107, pp. 598-603Liu, B., Nakata, K., Liu, S., Sakai, M., Ochiai, T., Murakami, T., Takagi, K., Fujishima, A., (2012) J. Phys. Chem. C, 116, pp. 7471-7479An, W.-J., Wang, W.-N., Ramalingam, B., Mukherjee, S., Daubayev, B., Gangopadhyay, S., Biswas, P., (2012) Langmuir, 28, pp. 7528-7534Jang, J.S., Choi, S.H., Kim, D.H., Jang, J.W., Lee, K.S., Lee, J.S., (2009) J. Phys. Chem. C, 113, pp. 8990-8996Li, Z., Wang, Y., Liu, J., Chen, G., Li, Y., Zhou, C., (2009) Int. J. Hydrogen Energy, 34, pp. 147-152Shimizu, K.-I., Tsuji, Y., Hatamachi, T., Toda, K., Kodama, T., Sato, M., Kitayama, Y., (2004) Phys. Chem. Chem. Phys., 6, pp. 1064-106

    Sample-to-sample torque fluctuations in a system of coaxial randomly charged surfaces

    Full text link
    Polarizable randomly charged dielectric objects have been recently shown to exhibit long-range lateral and normal interaction forces even when they are effectively net neutral. These forces stem from an interplay between the quenched statistics of random charges and the induced dielectric image charges. This type of interaction has recently been evoked to interpret measurements of Casimir forces in vacuo, where a precise analysis of such disorder-induced effects appears to be necessary. Here we consider the torque acting on a randomly charged dielectric surface (or a sphere) mounted on a central axle next to another randomly charged surface and show that although the resultant mean torque is zero, its sample-to-sample fluctuation exhibits a long-range behavior with the separation distance between the juxtaposed surfaces and that, in particular, its root-mean-square value scales with the total area of the surfaces. Therefore, the disorder-induced torque between two randomly charged surfaces is expected to be much more pronounced than the disorder-induced lateral force and may provide an effective way to determine possible disorder effects in experiments, in a manner that is independent of the usual normal force measurement.Comment: 7 pages, 3 fig

    Effect of the period of the substrate oscillation in the dynamic glancing angle deposition technique: A columnar periodic nanostructure formation

    No full text
    Nanostructured CrN thin films are obtained by combining RF physical vapor and dynamic glancing angle deposition using a computer-controlled substrate oscillatory motion. By using an appropriate frequency for substrate oscillation, it becomes feasible to tailor the physical properties of thin films deposited onto the substrate. The films are deposited by moving the substrate back and forward between specified angles with, among other parameters, a controlled time-dependent angular position φ(t) of the substrate. Thus, the direction of atoms striking the film changes in accordance to the position of the substrate. In this paper, we report the physical properties of a material for a varying frequency of substrate oscillation while maintaining the same angular φ(t) function (triangular function) in all the studied samples. By controlling the incidence angle φ(t) for precursor atoms impinging upon the substrate, one can prompt the formation of wavy-like periodic columnar nanostructures. The physical characteristics of the coating such as morphology, residual stress, nanohardness, crystallite size, composition, and texture of the columnar periodic multistructured films are all remarkably dependent on the oscillation frequency. The cited physical properties obtained by moving the substrate forward and back with an angular φ(t) triangular function and several periods of oscillation are reported and analyzed383CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2012/10127-5This work was supported partially by the Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) Project 2012/10127-5 and the Instituto Nacional de Engenharia de Superficies (INES). LFZ, CF, and FA are CNPq fellows. During the development of this paper, MJMJ and VA were CAPES fellows. The authors are grateful to the LNNano, where the SEM measurements were performed. Special thanks go to C. Piacenti for his technical suppor

    Full field chemical imaging of buried native sub-oxide layers on doped silicon patterns

    Get PDF
    International audienceFully energy-filtered X-ray photoelectron emission microscopy is used to analyze the spatial distribution of the silicon sub-oxide structure at the SiO 2 /Si interface as a function of underlying doping pattern. Using a spectroscopic pixel-by-pixel curve fitting analysis, we obtain the sub-oxide binding energy and intensity distributions over the full field of view. Binding energy maps for each oxidation state are obtained with a spatial resolution of 120 nm. Within the framework of a five-layer model, the experimental data are used to obtain quantitative maps of the sub-oxide layer thickness and also their spatial distribution over the p–n junctions. Variations in the sub-oxide thicknesses are found to be linked to the level and type of doping. The procedure, which takes into account instrumental artefacts, enables the quantitative analysis of the full 3D dataset

    Spatial Modulation Of Above-the-gap Cathodoluminescence In Inp Nanowires

    No full text
    We report the observation of light emission on wurtzite InP nanowires excited by fast electrons. The experiments were performed in a scanning transmission electron microscope using an in-house-built cathodoluminescence detector. Besides the exciton emission, at 850 nm, emission above the band gap from 400 to 800 nm was observed. In particular, this broad emission presented systematic periodic modulations indicating variations in the local excitation probability. The physical origin of the detected emission is not clear. Measurements of the spatial variation of the above-the-gap emission points to the formation of leaky cavity modes of a plasmonic nature along the nanowire length, indicating the wave nature of the excitation. We propose a phenomenological model, which fits closely the observed spatial variations. © 2013 IOP Publishing Ltd.2550Lu, W., Lieber, C.M., Semiconductor nanowires (2006) Journal of Physics D: Applied Physics, 39 (21), pp. R387-R406. , DOI 10.1088/0022-3727/39/21/R01, PII S0022372706105525, R01Law, M., Goldberger, J., Yang, P., (2004) Annu. Rev. Mater. Res., 34, p. 83. , 10.1146/annurev.matsci.34.040203.112300Samuelson, L., (2004) Physica, 25, p. 313. , 10.1016/j.physe.2004.06.030 1386-9477 EAgarwal, R., (2008) Small, 4, p. 1872. , 10.1002/smll.200800556 1442-8504Chen, C., Shehata, S., Fradin, C., LaPierre, R., Couteau, C., Weihs, G., Self-directed growth of AlGaAs core-shell nanowires for visible light applications (2007) Nano Letters, 7 (9), pp. 2584-2589. , DOI 10.1021/nl070874kKrogstrup, P., Yamasaki, J., Sorensen, C.B., Johnson, E., Wagner, J.B., Pennington, R., Aagesen, M., Nygard, J., (2009) Nano Lett., 9, p. 3689. , 10.1021/nl901348dHolmes, J.D., Johnston, K.P., Doty, R.C., Korgel, B.A., Control of thickness and orientation of solution-grown silicon nanowires (2000) Science, 287 (5457), pp. 1471-1473. , DOI 10.1126/science.287.5457.1471Johnson, J.C., Choi, H.-J., Knutsen, K.P., Schaller, R.D., Yang, P., Saykally, R.J., (2002) Nature Mater., 1, p. 106. , 10.1038/nmat728 1476-1122Minot, E.D., Kelkensberg, F., Van Kouwen, M., Van Dam, J.A., Kouwenhoven, L.P., Zwiller, V., Borgstrom, M.T., Bakkers, E.P.A.M., Single quantum dot nanowire LEDs (2007) Nano Letters, 7 (2), pp. 367-371. , DOI 10.1021/nl062483wFriedler, I., Sauvan, C., Hugonin, J.P., Lalanne, P., Claudon, J., Gérard, J.M., (2009) Opt. Express, 17, p. 2095. , 10.1364/OE.17.002095 1094-4087Pettersson, H., Tragardh, J., Persson, A.I., Landln, L., Hessman, D., Samuelson, L., Infrared photodetectors in heterostructure nanowires (2006) Nano Letters, 6 (2), pp. 229-232. , DOI 10.1021/nl052170lCanham, L.T., (1990) Appl. Phys. Lett., 57, p. 1046. , 10.1063/1.103561Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C., (1999) Phys. Rev. Lett., 82, p. 197. , 10.1103/PhysRevLett.82.197Egerton, R.F., (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope, , 10.1007/978-1-4757-5099-7Yamamoto, N., Bhunia, S., Watanabe, Y., (2006) Appl. Phys. Lett., 88. , 10.1063/1.2168043 153106Chu, M.-W., Chen, C.-H., García De Abajo, F.J., Deng, J.-P., Mou, C.-Y., (2008) Phys. Rev., 77. , 10.1103/PhysRevB.77.245402 B 245402Zagonel, L.F., (2011) Nano Lett., 11, p. 568. , 10.1021/nl103549tTizei, L.H.G., Kociak, M., (2012) Nanotechnology, 23 (17). , 10.1088/0957-4484/23/17/175702 0957-4484 175702Tizei, L.H.G., Kociak, M., (2013) Phys. Rev. Lett., 110. , 10.1103/PhysRevLett.110.153604 153604Zagonel, L.F., Rigutti, L., Tchernycheva, M., Jacopin, G., Songmuang, R., Kociak, M., (2012) Nanotechnology, 23 (45). , 10.1088/0957-4484/23/45/455205 0957-4484 455205Wagner, R.S., Ellis, W.C., (1964) Appl. Phys. Lett., 4, p. 89. , 10.1063/1.1753975Tizei, L.H.G., Chiaramonte, T., Ugarte, D., Cotta, M.A., (2009) Nanotechnology, 20 (27). , 10.1088/0957-4484/20/27/275604 0957-4484 275604Glas, F., Harmand, J.-C., Patriarche, G., Why does wurtzite form in nanowires of III-V zinc blende semiconductors? (2007) Physical Review Letters, 99 (14), p. 146101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.146101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.146101Oliveiras, D.S., Tizei, L.H.G., Ugarte, D., Cotta, M.A., (2013) Nano Lett., 13, p. 9. , 10.1021/nl302891bMattila, M., Hakkarainen, T., Mulot, M., Lipsanen, H., (2006) Nanotechnology, 17 (6), p. 1580. , 10.1088/0957-4484/17/6/008 0957-4484 008Mishra, A., (2007) Appl. Phys. Lett., 91. , 10.1063/1.2828034 263104Gadret, E.G., (2010) Phys. Rev., 82. , 10.1103/PhysRevB.82.125327 B 125327Nobis, T., Kaidashev, E.M., Rahm, A., Lorenz, M., Grundmann, M., (2004) Phys. Rev. Lett., 93. , 10.1103/PhysRevLett.93.103903 103903Vesseur, E.J.R., De Abajo, F.J.G., Polman, A., (2009) Nano Lett., 9, p. 3147. , 10.1021/nl9012826Storm, K., Halvardsson, F., Heurlin, M., Lindgren, D., Gustafsson, A., Wu, P.M., Monemar, B., Samuelson, L., (2012) Nature Nanotechnol., 7, p. 718. , 10.1038/nnano.2012.190 1748-3387Jeanguillaume, C., Colliex, C., (1986) Ultramicroscopy, 28, p. 252. , 10.1016/0304-3991(89)90304-5 0304-3991Yu, P.Y., Cardona, M., (2005) Fundamentals of Semiconductors, , 10.1007/b137661 1868-4513Long, J.P., Flynn, R.A., Vurgaftman, I., Simpkins, B.S., MÀkinen, A.J., Mastro, M.A., Pehrsson, P.E., (2010) Appl. Phys. Lett., 97. , 10.1063/1.3488018 103105Palik, E.D., (1985) Handbook of Optical Constants of SolidsGarcia De Abajo, F.J., Kociak, M., Probing the photonic local density of states with electron energy loss spectroscopy (2008) Physical Review Letters, 100 (10), p. 106804. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.106804&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.106804García De Abajo, F.J., (1999) Phys. Rev., 59, p. 3095. , 10.1103/PhysRevB.59.3095 BGarcía De Abajo, F.J., (2010) Rev. Mod. Phys., 82, p. 209. , 10.1103/RevModPhys.82.209 0034-686

    Influence of the structure and composition of titanium nitride substrates on carbon nanotubes grown by chemical vapour deposition

    No full text
    International audienceThe influence of nano-structure and composition of the substrate on the properties of carbon nanotubes (CNTs) is presented. The samples are obtained following a sequential in situ deposition routine. First, TiNxOy films are grown on a crystalline silicon substrate. Immediately, dispersed nickel catalyst particles are deposited on the film. The non-stoichiometric TiNxOy films and Ni particles are grown by ion beam sputtering of Ti and Ni targets, respectively. Soon after that, the CNTs are grown by feeding acetylene gas into the chamber and maintaining the substrate at 973 K. In situ x-ray photoelectron spectroscopy allows compositional and structural analysis in all the stages of the sample growth process. The CNTs are further studied by scanning and transmission electron microscopy techniques, showing different population densities, sizes and diameters as a function of the oxygen content in the TiNxOy films. The results show that oxygen influences the surface diffusion mobility of the precursor carbon atoms involved in the growth of nanotubes suggesting the inhibition of catalyst particle coarsening. It is concluded that, in addition to acting as a diffusion barrier between the catalyst particles and the silicon support, the TiNxOy films modify the growth kinetics of the CNTs

    Seeing And Measuring In Colours: Electron Microscopy And Spectroscopies Applied To Nano-optics

    No full text
    Over the past ten years, Scanning Transmission Electron Microscopes (STEM) fitted with Electron Energy Loss Spectroscopy (EELS) and/or Cathodoluminescence (CL) spectroscopy have demonstrated to be essential tools for probing the optical properties of nano-objects at sub-wavelength scales. Thanks to the possibility of measuring them at a nanometer scale in parallel to the determination of the structure and morphology of the object of interest, new challenging experimental and theoretical horizons have been unveiled. As regards optical properties of metallic nanoparticles, surface plasmons have been mapped at a scale unimaginable only a few years ago, while the relationship between the energy levels and the size of semiconducting nanostructures a few atomic layers thick could directly be measured. This paper reviews some of these highly stimulating recent developments. © 2013 AcadĂ©mie des sciences.1502/03/15158175Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., Hell, S.W., Sted microscopy reveals crystal colour centres with nanometric resolution (2009) Nat. Photonics, 3 (3), pp. 144-147Douillard, L., Charra, F., Korczak, Z., Bachelot, R., Kostcheev, S., Lerondel, G., Adam, P.M., Royer, P., Short range plasmon resonators probed by photoemission electron microscopy (2008) Nano Lett., 8 (3), pp. 935-940de Abajo, F.J.G., Optical excitations in electron microscopy (2010) Rev. Modern Phys., 82, pp. 209-275Bosman, M., Keast, V.J., Garcia-Munoz, J.L., D'alfonso, A.J., Findlay, S.D., Allen, L.J., Two-dimensional mapping of chemical information at atomic resolution (2007) Phys. Rev. Lett., 99 (8), p. 086102Torres-Pardo, A., Gloter, A., Zubko, P., NoĂ©mie, J., CĂ©line, L., Colliex, C., Triscone, J.-M., StĂ©phan, O., Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale (2011) Phys. Rev. B, 84, p. 220102Gloter, A., Douiri, A., Tence, M., Colliex, C., Improving energy resolution of EELS spectra: an alternative to the monochromator solution (2003) Ultramicroscopy, 96 (3-4), pp. 385-400Nelayah, J., Kociak, M., StĂ©phan, O., de Abajo, F.J.G., TencĂ©, M., Henrard, L., Taverna, D., Colliex, C., Mapping surface plasmons on a single metallic nanoparticle (2007) Nat. Phys., 3 (5), pp. 348-353N'Gom, M., Ringnalda, J., Mansfield, J.F., Agarwal, A., Kotov, N., Zaluzec, N.J., Norris, T.B., Single particle plasmon spectroscopy of silver nanowires and gold nanorods (2008) Nano Lett., 8 (10), pp. 3200-3204Rossouw, D., Botton, G.A., Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding (2013) Phys. Rev. Lett., 110 (6), p. 066801Merano, M., Sonderegger, S., Crottini, A., Collin, S., Renucci, P., Pelucchi, E., Malko, A., Ganiere, J.D., Probing carrier dynamics in nanostructures by picosecond cathodoluminescence (2005) Nature, 438 (7067), pp. 479-482Vesseur, E.J.R., de Abajo, F.J.G., Polman, A., Modal decomposition of surface-plasmon whispering gallery resonators (2009) Nano Lett., 9 (9), pp. 3147-3150Willems, B., Tallaire, A., Barjon, J., Exploring the origin and nature of luminescent regions in CVD synthetic diamond (2011) Gems Gemol., 47 (3), pp. 202-207Strunk, H.P., Albrecht, M., Scheel, H., Cathodoluminescence in transmission electron microscopy (2006) J. Microsc., 224, pp. 79-85Lim, S.K., Brewster, M., Qian, F., Li, Y., Lieber, C.M., Gradecak, S., Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution (2009) Nano Lett., 9 (11), pp. 3940-3944Zagonel, L.F., Mazzucco, S., Tence, M., March, K., Bernard, R., Laslier, B., Jacopin, G., Kociak, M., Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure (2011) Nano Lett., 11 (2), pp. 568-573Jeanguillaume, C., Colliex, C., Spectrum-image: The next step in EELS digital acquisition and processing (1989) Ultramicroscopy, 28 (1-4), pp. 252-257Colliex, C., TencĂ©, M., LefĂšvre, E., Mory, C., Gu, H., Bouchetand, D., Jeanguillaume, C., Electron-energy-loss spectroscopy mapping (1994) Mikrochim. Acta, 71, pp. 114-115Kociak, M., StĂ©phan Walls, M.O., Colliex, C., (2011) Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications, p. 163. , Springer, Chapter 4Nelayah, J., Gu, J., Sigle, W., Koch, C.T., Pastoriza-Santos, I., Liz-Marzan, L.M., van Aken, P.A., Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss eftem imaging (2009) Opt. Lett., 34 (7), pp. 1003-1005Schaffer, B., Grogger, W., Kothleitner, G., Hofer, F., Comparison of eftem and stem eels plasmon imaging of gold nanoparticles in a monochromated tem (2010) Ultramicroscopy, 110 (8), pp. 1087-1093Gu, L., Sigle, W., Koch, C.T., Ogut, B., van Aken, P.A., Talebi, N., Vogelgesang, R., Mao, J., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (2011) Phys. Rev. B, 83 (19), p. 195433Schaffer, B., Kothleitner, G., Grogger, W., Eftem spectrum imaging at high-energy resolution (2006) Ultramicroscopy, 106 (11-12), pp. 1129-1138Tizei, L.H.G., Kociak, M., Spatially resolved quantum nano-optics of single photons using an electron microscope (2013) Phys. Rev. Lett., 110 (15), p. 153604Ritchie, R.H., Plasma losses by fast electrons in thin films (1957) Phys. Rev., 106, pp. 874-881Lucas, A.A., Kartheuser, E., Energy-loss spectrum of fast electrons in a dielectric slab. I. Nonretarded losses and Cherenkov bulk loss (1970) Phys. Rev. B, 1, pp. 3588-3598Ferrell, T.L., Echenique, P.M., Generation of surface excitations on dielectric spheres by an external electron beam (1985) Phys. Rev. Lett., 55, pp. 1526-1529Zabala, N., Rivacoba, A., Echenique, P.M., Energy loss of electrons travelling through cylindrical holes (1989) Surf. Sci., 209, pp. 465-480Taverna, D., Kociak, M., Charbois, V., Henrard, L., Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube (2002) Phys. Rev. B, 66 (23), p. 235419Garcia de Abajo, F.J., Relativistic energy loss induced photon emission in the interaction of a dielectric sphere with an external electron beam (1999) Phys. Rev. B, 59, pp. 3095-3107Yamamoto, N., Araya, K., de Abajo, F.J.G., Photon emission from silver particles induced by a high-energy electron beam (2001) Phys. Rev. B, 6420 (20), p. 205419Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., de Abajo, F.J.G., Wegener, M., Kociak, M., Spectral imaging of individual split-ring resonators (2010) Phys. Rev. Lett., 105 (25), p. 255501Koh, A.L., Fernandez-Dominguez, A.I., McComb, D.W., Maier, S.A., Yang, J.K.W., High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures (2011) Nano Lett., 11 (3), pp. 1323-1330Bohren, C.F., Huffman, D.R., (2007) Absorption and Scattering of Light by Small Particles, , Wiley-VCH Verlag GmbHde Abajo, F.J.G., Kociak, M., Probing the photonic local density of states with electron energy loss spectroscopy (2008) Phys. Rev. Lett., 100 (10), p. 106804de Abajo, F.J.G., Pattantyus-Abraham, A.G., Zabala, N., Rivacoba, A., Wolf, M.O., Echenique, P.M., Cherenkov effect as a probe of photonic nanostructures (2003) Phys. Rev. Lett., 91 (14), p. 143902Joulain, K., Carminati, R., Mulet, J.P., Greffet, J.J., Definition and measurement of the local density of electromagnetic states close to an interface (2003) Phys. Rev. B, 68 (24), p. 245405Lemay, S.G., Janssen, J.W., van den Hout, M., Mooij, M., Bronikowski, M.J., Willis, P.A., Smalley, R.E., Dekker, C., Two-dimensional imaging of electronic wavefunctions in carbon nanotubes (2001) Nature, 412 (6847), pp. 617-620Hohenester, U., Ditlbacher, H., Krenn, J.R., Electron-energy-loss spectra of plasmonic nanoparticles (2009) Phys. Rev. Lett., 103 (10), p. 106801Dereux, A., Girard, C., Weeber, J.C., Theoretical principles of near-field optical microscopies and spectroscopies (2000) J. Chem. Phys., 112 (18), pp. 7775-7789Boudarham, G., Kociak, M., Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes (2012) Phys. Rev. B, 85, p. 245447Ouyang, F., Isaacson, M., Accurate modeling of particle substrate coupling of surface-plasmon excitation in eels (1989) Ultramicroscopy, 31 (4), pp. 345-350GarcĂ­a de Abajo, F.J., Aizpurua, J., Numerical simulation of electron energy loss near inhomogeneous dielectrics (1997) Phys. Rev. B, 56 (24), pp. 15873-15884Hörl, A., TrĂŒgler, A., Hohenester, U., Tomography of particle plasmon fields from electron energy loss spectroscopy (2013) Phys. Rev. Lett., 111, p. 076801Nicoletti, O., de la Pena, F., Leary, R.K., Holland, D.J., Ducati, C., Midgley, P.A., Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles (2013) Nature, 502 (7469), pp. 80-84Nelayah, J., Kociak, M., Stephan, O., Geuquet, N., Henrard, L., de Abajo, F.J.G., Pastoriza-Santos, I., Colliex, C., Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms (2010) Nano Lett., 10 (3), pp. 902-907Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E., Botton, G.A., Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe (2011) Nano Lett., 11 (4), pp. 1499-1504Iberi, V., Mirsaleh-Kohan, N., Camden, J.P., Understanding plasmonic properties in metallic nanostructures by correlating photonic and electronic excitations (2013) J. Phys. Chem. Lett., 4 (7), pp. 1070-1078de Abajo, F.J.G., Howie, A., Retarded field calculation of electron energy loss in inhomogeneous dielectrics (2002) Phys. Rev. B, 65 (11), p. 115418Hohenester, U., Trugler, A., MNPBEM - a matlab toolbox for the simulation of plasmonic nanoparticles (2012) Comput. Phys. Commun., 183 (2), pp. 370-381Geuquet, N., Henrard, L., EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation (2010) Ultramicroscopy, 110 (8), pp. 1075-1080Fuchs, R., Theory of the optical properties of ionic crystal cubes (1975) Phys. Rev. B, 11, pp. 1732-1740Das, P., Chini, T.K., Pond, J., Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with fdtd simulations (2012) J. Phys. Chem. C, 116 (29), pp. 15610-15619Yamamoto, N., Nakano, M., Suzuki, T., Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams (2006) Surf. Interface Anal., 38 (12-13), pp. 1725-1730Vesseur, E.J.R., de Waele, R., Kuttge, M., Polman, A., Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy (2007) Nano Lett., 7 (9), pp. 2843-2846Gomez-Medina, R., Yamamoto, N., Nakano, M., Abajo, F.J.G., Mapping plasmons in nanoantennas via cathodoluminescence (2008) New J. Phys., 10, p. 105009Coenen, T., Vesseur, E.J.R., Polman, A., Deep subwavelength spatial characterization of angular emission from single-crystal au plasmonic ridge nanoantennas (2012) ACS Nano, 6 (2), pp. 1742-1750Bashevoy, M.V., Jonsson, F., MacDonald, K.F., Chen, Y., Zheludev, N.I., Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution (2007) Opt. Express, 15 (18), pp. 11313-11320Kuttge, M., Vesseur, E.J.R., Polman, A., Fabry-Perot resonators for surface plasmon polaritons probed by cathodoluminescence (2009) Appl. Phys. Lett., 94 (18), p. 183104Suzuki, T., Yamamoto, N., Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal (2009) Opt. Express, 17 (26), pp. 23664-23671Takeuchi, K., Yamamoto, N., Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence (2011) Opt. Express, 19 (13), pp. 12365-12374Coenen, T., Vesseur, E.J.R., Polman, A., Koenderink, A.F., Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy (2011) Nano Lett., 11 (9), pp. 3779-3784Myroshnychenko, V., Nelayah, J., Adamo, G., Geuquet, N., Rodriguez-Fernandez, J., Pastoriza-Santos, I., MacDonald, K.F., de Abajo, F.J.G., Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study (2012) Nano Lett., 12 (8), pp. 4172-4180Das, P., Chini, T.K., Spectroscopy and imaging of plasmonic modes over a single decahedron gold nanoparticle: A combined experimental and numerical study (2012) J. Phys. Chem. C, 116 (49), pp. 25969-25976N'Gom, M., Li, S.Z., Schatz, G., Erni, R., Agarwal, A., Kotov, N., Norris, T.B., Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods (2009) Phys. Rev. B, 80 (11), p. 113411von Cube, F., Irsen, S., Linden, S., From isolated metaatoms to photonic metamaterials: Mapping of collective near-field phenomena with eels (2012) 2012 Conference on Lasers and Electro-Optics (CLEO)von Cube, F., Irsen, S., Diehl, R., Niegemann, J., Busch, K., Linden, S., From isolated metaatoms to photonic metamaterials: Evolution of the plasmonic near-field (2013) Nano Lett., 13 (2), pp. 703-708Nicoletti, O., Wubs, M., Mortensen, N.A., Sigle, W., van Aken, P.A., Midgley, P.A., Surface plasmon modes of a single silver nanorod: an electron energy loss study (2011) Opt. Express, 19 (16), pp. 15371-15379Schmidt, F.P., Ditlbacher, H., Hohenester, U., Hohenau, A., Hofer, F., Krenn, J.R., Dark plasmonic breathing modes in silver nanodisks (2012) Nano Lett., 12 (11), pp. 5780-5783Mazzucco, S., Geuquet, N., Ye, J., Stephan, O., Van Roy, W., Van Dorpe, P., Henrard, L., Kociak, M., Ultralocal modification of surface plasmons properties in silver nanocubes (2012) Nano Lett., 12 (3), pp. 1288-1294Mazzucco, S., Stephan, O., Colliex, C., Pastoriza-Santos, I., Liz-Marzan, L.M., de Abajo, J.G., Kociak, M., Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars (2011) Eur. Phys. J. Appl. Phys., 54 (3), p. 33512Bosman, M., Ye, E., Tan, S.F., Nijhuis, C.A., Yang, J.K.W., Marty, R., Mlayah, A., Han, M.Y., Surface plasmon damping quantified with an electron nanoprobe (2013) Sci. Rep., 3, p. 1312Liang, H., Rossouw, D., Zhao, H., Cushing, S.K., Shi, H., Korinek, A., Xu, H., Ma, D., Asymmetric silver nanocarrot structures: Solution synthesis and their asymmetric plasmonic resonances (2013) J. Am. Chem. Soc., 135 (26), pp. 9616-9619Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I., Cortie, M.B., Mapping surface plasmons at the nanometre scale with an electron beam (2007) Nanotechnology, 18 (16), p. 165505Chu, M.-W., Myroshnychenko, V., Chen, C.-H., Deng, J.-P., Mou, C.-Y., de Abajo, F.J.G., Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam (2009) Nano Lett., 9 (1), pp. 399-404Alber, I., Sigle, W., Muller, S., Neumann, R., Picht, O., Rauber, M., van Aken, P.A., Toimil-Molares, M.E., Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers (2011) ACS Nano, 5 (12), pp. 9845-9853Scholl, J.A., Garcia-Etxarri, A., Koh, A.L., Dionne, J.A., Observation of quantum tunneling between two plasmonic nanoparticles (2013) Nano Lett., 13 (2), pp. 564-569Talebi, N., Sigle, W., Vogelgesang, R., Koch, C.T., Fernandez-Lopez, C., Liz-Marzan, L.M., Ogut, B., van Aken, P.A., Breaking the mode degeneracy of surface plasmon resonances in a triangular system (2012) Langmuir, 28 (24), pp. 8867-8873Duan, H.G., Fernandez-Dominguez, A.I., Bosman, M., Maier, S.A., Yang, J.K.W., Nanoplasmonics: Classical down to the nanometer scale (2012) Nano Lett., 12 (3), pp. 1683-1689Ogut, B., Talebi, N., Vogelgesang, R., Sigle, W., van Aken, P.A., Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible (2012) Nano Lett., 12 (10), pp. 5239-5244Bosman, M., Anstis, G.R., Keast, V.J., Clarke, J.D., Cortie, M.B., Light splitting in nanoporous gold and silver (2012) ACS Nano, 6 (1), pp. 319-326Losquin, A., Camelio, S., Rossouw, D., Besbes, M., Pailloux, F., Babonneau, D., Botton, G.A., Kociak, M., Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films (2013) Phys. Rev. B, 88, p. 115427Rodriguez-Gonzalez, B., Attouchi, F., Cardinal, M.F., Myroshnychenko, V., Stephan, O., de Abajo, F.J.G., Liz-Marzan, L.M., Kociak, M., Surface plasmon mapping of dumbbell-shaped gold nanorods: The effect of silver coating (2012) Langmuir, 28 (24), pp. 9063-9070Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F.R., Krenn, J.R., Silver nanowires as surface plasmon resonators (2005) Phys. Rev. Lett., 95 (25), p. 257403DorfmĂŒller, J., Vogelgesang, R., Weitz, R.T., Rockstuhl, C., Etrich, C., Pertsch, T., Lederer, F., Kern, K., Fabry-Perot resonances in one-dimensional plasmonic nanostructures (2009) Nano Lett., 9 (6), pp. 2372-2377Esteban, R., Vogelgesang, R., Dorfmuller, J., Dmitriev, A., Rockstuhl, C., Etrich, C., Kern, K., Direct near-field optical imaging of higher order plasmonic resonances (2008) Nano Lett., 8 (10), pp. 3155-3159Imura, K., Okamoto, H., Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials (2008) Bull. Chem. Soc. Jpn., 81, pp. 659-675Novotny, L., van Hulst, N., Antennas for light (2011) Nat. Photonics, 5 (2), pp. 83-90von Cube, F., Irsen, S., Niegemann, J., Matyssek, C., Hergert, W., Busch, K., Linden, S., Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [invited] (2011) Opt. Mater. Express, 1 (5), pp. 1009-1018Vesseur, E.J.R., Polman, A., Controlled spontaneous emission in plasmonic whispering gallery antennas (2011) Appl. Phys. Lett., 99 (23), p. 231112Chaturvedi, P., Hsu, K.H., Kumar, A., Fung, K.H., Mabon, J.C., Fang, N.X., Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy (2009) ACS Nano, 3 (10), pp. 2965-2974Gu, L., Sigle, W., Koch, C.T., Nelayah, J., Srot, V., van Aken, P.A., Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy (2009) Ultramicroscopy, 109 (9), pp. 1164-1170Khan, I.R., Cunningham, D., Lazar, S., Graham, D., Smith, W.E., McComb, D.W., A tem and electron energy loss spectroscopy (eels) investigation of active and inactive silver particles for surface enhanced resonance raman spectroscopy (serrs) (2006) Faraday Discuss., 132, pp. 171-178Rodriguez-Lorenzo, L., Alvarez-Puebla, R.A., Pastoriza-Santos, I., Mazzucco, S., Stephan, O., Kociak, M., Liz-Marzan, L.M., de Abajo, F.J.G., Zeptomol detection through controlled ultrasensitive surface-enhanced raman scattering (2009) J. Am. Chem. Soc., 131 (13), p. 4616Batson, P.E., Surface plasmon coupling in clusters of small spheres (1982) Phys. Rev. Lett., 49, pp. 936-940Zabala, N., Rivacoba, A., Echenique, P.M., Coupling effects in the excitations by an external electron beam near close particles (1997) Phys. Rev. B, 56 (12), pp. 7623-7635Ogut, B., Vogelgesang, R., Sigle, W., Talebi, N., Koch, C.T., van Aken, P.A., Hybridized metal slit eigenmodes as an illustration of babinet's principle (2011) ACS Nano, 5 (8), pp. 6701-6706Rivacoba, A., Apell, P., Zabala, N., Energy-loss probability of stem electrons in cylindrical surfaces (1995) Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 96 (3-4), pp. 465-469Ringe, E., McMahon, J.M., McMahon, J.M., Sohn, K., Cobley, C., Xia, Y., Huang, J., VanDuyne, R.P., Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: A systematic single-particle approach (2010) J. Phys. Chem. C, 114, p. 12511Zhang, S.P., Bao, K., Halas, N.J., Xu, H.X., Nordlander, P., Substrate-induced fano resonances of a plasmonic: Nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed (2011) Nano Lett., 11 (4), pp. 1657-1663Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M., Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor-device technologies (1994) J. Appl. Phys., 76 (3), pp. 1363-1398Xu, S.J., Chua, S.J., Mei, T., Wang, X.C., Zhang, X.H., Karunasiri, G., Fan, W.J., Xie, X.G., Characteristics of ingaas quantum dot infrared photodetectors (1998) Appl. Phys. Lett., 73 (21), pp. 3153-3155Jani, O., Ferguson, I., Honsberg, C., Kurtz, S., Design and characterization of gan/ingan solar cells (2007) Appl. Phys. Lett., 91 (13), p. 132117Gisin, N., Ribordy, G.G., Tittel, W., Zbinden, H., Quantum cryptography (2002) Rev. Mod. Phys., 74 (1), pp. 145-195Couillard, M., Kociak, M., Stephan, O., Botton, G.A., Colliex, C., Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies (2007) Phys. Rev. B, 76 (16), p. 165131Yacobi, B.G., Holt, D.B., (1990) Cathodoluminescence Microscopy of Inorganic Solids, , Springer USJahn, U., Ristic, J., Calleja, E., Cathodoluminescence spectroscopy and imaging of GaN/(Al,Ga)N nanocolumns containing quantum disks (2007) Appl. Phys. Lett., 90 (16), p. 161117RodriguezViejo, J., Jensen, K.F., Mattoussi, H., Michel, J., Dabbousi, B.O., Bawendi, M.G., Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites (1997) Appl. Phys. Lett., 70 (16), pp. 2132-2134Grundmann, M., Christen, J., Ledentsov, N.N., Bohrer, J., Bimberg, D., Ruvimov, S.S., Werner, P., Alferov, Z.I., Ultranarrow luminescence lines from single quantum dots (1995) Phys. Rev. Lett., 74 (20), pp. 4043-4046Garayt, J.P., Gerard, J.M., Enjalbert, F., Ferlazzo, L., Founta, S., Martinez-Guerrero, E., Rol
    corecore