Multiple Scattering X-ray Photoelectron Diffraction Study Of The Srtio 3 (100) Surface

Abstract

The atomic surface structure of SrTiO3 (100) after annealing at 630 °C in vacuum is investigated by x-ray photoelectron diffraction (XPD) using the Sr 3 d5/2 core level. The photoelectron diffraction peaks are successfully assigned by considering the forward scattering of photoelectrons by the atomic potential near the emitter atom in the lattice. The strongest diffraction peaks are aligned along the single crystal internuclear axes. We compare the results of photoelectron multiple scattering calculations (MSC) of SrO and TiO2 terminated SrTiO3 (100) surfaces, including surface relaxation and rumpling, with the experimental data. For TiO2 and SrO terminated SrTiO3 (100) surfaces, all top-layer cations relax inward, whereas second-layer atoms relax outward. The surface rumpling for SrO- and TiO2 -terminated surfaces agrees well with low-energy electron diffraction results. Using a genetic algorithm the best agreement of MSC to the experimental XPD data is obtained for a SrO terminated surface with a 30% coverage of 3 ML SrO(100) islands. © 2009 American Institute of Physics.1063Rijnders, G., Curras, S., Huijben, M., Blanck, D., Rogalla, H., Kotecki, D.E., Baniecki, J.D., Wise, R., (2004) Appl. Phys. Lett., 84, p. 1150. , 0003-6951, () 10.1063/1.1646463;, IBM J. Res. Dev. 0018-8646 43, 367 (1999)Kawasaki, M., Ohtomo, A., Arakane, T., Takahashi, K., Yoshimoto, M., Koinuma, H., Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides (1996) Applied Surface Science, 107, pp. 102-106. , DOI 10.1016/S0169-4332(96)00512-0, PII S0169433296005120Erdman, N., Marks, L.D., (2003) Surf. Sci., 526, p. 107. , 0039-6028,. 10.1016/S0039-6028(02)02573-6Kubo, T., Nozoye, H., (2001) Phys. Rev. Lett., 86, p. 1801. , 0031-9007,. 10.1103/PhysRevLett.86.1801Szot, K., Speier, W., Breuer, U., Meyer, R., Szade, J., Waser, R., (2000) Surf. Sci., 460, p. 112. , 0039-6028,. 10.1016/S0039-6028(00)00522-7Gunhold, A., Gomann, K., Beuermann, L., Frerichs, M., Borchardt, G., Kempter, V., Maus-Friedrichs, W., Geometric structure and chemical composition of SrTiO3 surfaces heated under oxidizing and reducing conditions (2002) Surface Science, 507-510, pp. 447-452. , DOI 10.1016/S0039-6028(02)01284-0, PII S0039602802012840Szot, K., Speier, W., (1999) Phys. Rev. B, 60, p. 5909. , 0163-1829,. 10.1103/PhysRevB.60.5909Castell, M.R., Nanostructures on the SrTiO3(0 0 1) surface studied by STM (2002) Surface Science, 516 (1-2), pp. 33-42. , DOI 10.1016/S0039-6028(02)02053-8, PII S0039602802020538Ruddlesden, S.N., Popper, P., (1958) Acta Crystallogr., 11, p. 54. , 0907-4449,. 10.1107/S0365110X58000128Liang Yong, Bonnell Dawn, A., Atomic structures of reduced SrTiO3(001) surfaces (1993) Surface Science, 285 (3), pp. L510-L516. , DOI 10.1016/0039-6028(93)90422-GHenrich, V.E., Dresselhaus, G., Zeiger, H.J., (1978) Phys. Rev. B, 17, p. 4908. , 0163-1829,. 10.1103/PhysRevB.17.4908Matsumoto Takuya, Tanaka Hiroyuki, Kawai Tomoji, Kawai Shichio, STM-imaging of a SrTiO3(100) surface with atomic-scale resolution (1992) Surface Science, 278 (3), pp. L153-L158. , DOI 10.1016/0039-6028(92)90659-THaruyama, Y., Fukutani, H., Aiura, Y., Nishihara, Y., Komeda, T., Kodaira, S., Maryama, T., Kato, H., (1993) Jpn. J. Appl. Phys., Suppl., 32, p. 543. , 10.1143/JJAP.32.L543Hirata, A., Saika, K., Koma, A., Ando, A., (1994) Surf. Sci., 319, p. 267. , 0039-6028,. 10.1016/0039-6028(94)90593-2Zagonel, L.F., Barrett, N., Renault, O., Bailly, A., Bäurer, M., Hoffmann, M., Shih, S.-J., Cockayne, D., (2008) Surf. Interface Anal., 40, p. 1709. , 0142-2421,. 10.1002/sia.2886Szot, K., Speier, W., Herion, J., Freiburg, C., (1997) Appl. Phys. A: Mater. Sci. Process., 64, p. 64. , 0947-8396Fompeyrine, J., Berger, R., Lang, H.P., Perret, J., Machler, E., Gerber, Ch., Locquet, J.-P., Local determination of the stacking sequence of layered materials (1998) Applied Physics Letters, 72 (14), pp. 1697-1699. , DOI 10.1063/1.121155, PII S0003695198019147Padilla, J., Vanderbilt, D., (1998) Surf. Sci., 418, p. 64. , 0039-6028,. 10.1016/S0039-6028(98)00670-0Cheng, C., Kunc, K., Lee, M.H., Structural relaxation and longitudinal dipole moment of SrTiO 3(001)(1 × 1) surfaces (2000) Physical Review B - Condensed Matter and Materials Physics, 62 (15), pp. 10409-10418. , DOI 10.1103/PhysRevB.62.10409Heifets, E., Kotomin, E.A., Maier, J., Semi-empirical simulations of surface relaxation for perovskite titanates (2000) Surface Science, 462 (1), pp. 19-35. , DOI 10.1016/S0039-6028(00)00603-8Bickel, N., Schmidt, G., Heinz, K., Muller, K., (1989) Phys. Rev. Lett., 62, p. 2009. , 0031-9007,. 10.1103/PhysRevLett.62.2009Hikita Tokihisa, Hanada Takashi, Kudo Masahiro, Kawai Maki, Structure and electronic state of the TiO2 and SrO terminated SrTiO3(100) surfaces (1993) Surface Science, 287 (88 PART A), pp. 377-381. , DOI 10.1016/0039-6028(93)90806-UIkeda, A., Nishimura, T., Morishita, T., Kido, Y., Surface relaxation and rumpling of TiO2-terminated SrTiO 3(001) determined by medium energy ion scattering (1999) Surface Science, 433, pp. 520-524. , DOI 10.1016/S0039-6028(99)00050-3Charlton, G., Brennan, S., Muryn, C.A., McGrath, R., Norman, D., Turner, T.S., Thornton, G., Surface relaxation of SrTiO3(001) (2000) Surface Science, 457 (1), pp. L376-L380. , DOI 10.1016/S0039-6028(00)00403-9Bottin, F., Finocchi, F., Noguera, C., (2003) Phys. Rev. B, 68, p. 035418. , 0163-1829,. 10.1103/PhysRevB.68.035418Eglitis, R.I., Vanderbilt, D., (2008) Phys. Rev. B, 77, p. 195408. , 0163-1829,. 10.1103/PhysRevB.77.195408Herger, R., Willmott, P.R., Bunk, O., Schlepütz, C.M., Patterson, B.D., Delley, B., Shneerson, V.L., Saldin, D.K., (2007) Phys. Rev. B, 76, p. 195435. , 0163-1829,. 10.1103/PhysRevB.76.195435Chen, Y., Hove, M.V., (1998), http://www.ap.cityu.edu.hk/personal-website/Van-Hove_files/mscd/mscdpack. html, MSCD Package, Lawrence Berkeley National LaboratoryPasierb, P., Komornicki, S., Rekas, M., Comparison of the chemical diffusion of undoped and Nb-doped SrTiO 3 (1999) Journal of Physics and Chemistry of Solids, 60 (11), pp. 1835-1844. , DOI 10.1016/S0022-3697(99)00193-6De Siervo, A., Soares, E.A., Landers, R., Kleiman, G.G., Photoelectron diffraction studies of Cu on Pd(111) random surface alloys (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (11), pp. 1-7. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PRBMDO000071000011115417000001&idtype=cvips, DOI 10.1103/PhysRevB.71.115417, 115417Mitchell, R.H., Chakhmouradian, A.R., Woodward, P.M., Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr(1-2x)Na(x)La(x))TiO3 (2000) Physics and Chemistry of Minerals, 27 (8), pp. 583-589. , DOI 10.1007/s002690000103http://www.qivx.com, From the Integral Scientist Periodic Table of the Elements (ISPT), available onPendry, J., (1980) J. Phys C, 13, p. 937. , 10.1088/0022-3719/13/5/024 0081-1947Bondino, F., Comelli, G., Baraldi, A., Rosei, R., Lizzit, S., Goldoni, A., Larciprete, R., Paolucci, G., (2002) Phys. Rev. B, 66, p. 075402. , 0163-1829,. 10.1103/PhysRevB.66.075402Van Hove, M., Moritz, W., Over, H., Rous, P., Wander, A., Barbieri, A., Materer, N., Somorjai, G., (1993) Surf. Sci. Rep., 19, p. 191. , 0167-5729,. 10.1016/0167-5729(93)90011-DViana, M.L., Muio, R.D., Soares, E.A., Van Hove, M.A., De Carvalho, V.E., Global search in photoelectron diffraction structure determination using genetic algorithms (2007) Journal of Physics Condensed Matter, 19 (44), p. 446002. , DOI 10.1088/0953-8984/19/44/446002, PII S095389840753354

    Similar works