223 research outputs found

    A proposal of a Renormalization Group transformation

    Get PDF
    We propose a family of renormalization group transformations characterized by free parameters that may be tuned in order to reduce the truncation effects. As a check we test them in the three dimensional XY model. The Schwinger--Dyson equations are used to study the renormalization group flow.Comment: Contribution to Lattice'94. uuencoded postscript fil

    Monte Carlo studies of antiferromagnetic spin models in three dimensions

    Full text link
    We study several antiferromagnetic formulations of the O(3) spin model in three dimensions by means of Monte Carlo simulations. We discuss about the vacua properties and analyze the phase transitions. Using Finite Size Scaling analysis we conclude that all phase transitions found are of first orderComment: 4 pages, 2 Postscript figures. Contribution to Lattice '9

    Finite Size Scaling and ``perfect'' actions: the three dimensional Ising model

    Get PDF
    Using Finite-Size Scaling techniques, we numerically show that the first irrelevant operator of the lattice λϕ4\lambda\phi^4 theory in three dimensions is (within errors) completely decoupled at λ=1.0\lambda=1.0. This interesting result also holds in the Thermodynamical Limit, where the renormalized coupling constant shows an extraordinary reduction of the scaling-corrections when compared with the Ising model. It is argued that Finite-Size Scaling analysis can be a competitive method for finding improved actions.Comment: 13 pages, 3 figure

    Implications of neoadjuvant therapy in human epidermal growth factor receptor 2–positive breast cancer

    Get PDF
    Breast cancer outcomes have markedly improved in great part because of advances in therapy. These improved outcomes, however, have been accompanied by greater financial costs, toxicities, and overtreatment of a substantial number of patients. We must now focus on studies that leverage our accumulated knowledge and use a more individualized approach for the locoregional and systemic management of this disease. De-escalation trials can be harder to perform as a result of the complexities of noninferiority designs, difficulty in funding them, and human nature. Behavioral economists find that people experience negative feelings about losses more strongly than positive feelings about gains of similar size. This makes it harder to conduct trials that are designed to treat breast cancer precisely rather than comprehensively, including studies that aim to de-escalate standard therapy

    New Universality Class in three dimensions: the Antiferromagnetic RP2RP^2 model

    Get PDF
    We present the results of a Monte Carlo simulation of the RP2RP^2 model in three dimensions with negative coupling. We observe a second order phase transition between the disordered phase and an antiferromagnetic, unfrustrated, ordered one. We measure, with a Finite Size Scaling analysis, the thermal exponent, obtaining Μ=0.784(8)\nu=0.784(8). We have found two magnetic-type relevant operators whose related η\eta exponents are 0.038(2)0.038(2) and 1.338(8)1.338(8) respectively.Comment: 10 pages, 2 Postscript figures. Revised version: references adde

    Finite size effects on measures of critical exponents in d=3 O(N) models

    Get PDF
    We study the critical properties of three-dimensional O(N) models, for N=2,3,4. Parameterizing the leading corrections-to-scaling for the η\eta exponent, we obtain a reliable infinite volume extrapolation, incompatible with previous Monte Carlo values, but in agreement with ϔ\epsilon-expansions. We also measure the critical exponent related with the tensorial magnetization as well as the Μ\nu exponents and critical couplings.Comment: 12 pages, 2 postscript figure

    Social reward among juvenile mice

    Get PDF
    Mammalian social relationships, such as mother–offspring attachments and pair bonds, can directly affect reproductive output. However, conspecifics approach one another in a comparatively broad range of contexts, so conceivably there are motivations for social congregation other than those underlying reproduction, parental care or territoriality. Here, we show that reward mediated by social contact is a fundamental aspect of juvenile mouse sociality. Employing a novel social conditioned place preference (SCPP) procedure, we demonstrate that social proximity is rewarding for juvenile mice from three inbred strains (A/J, C57BL/6J and DBA/2J), while mice from a fourth strain (BALB/cJ) are much less responsive to social contact. Importantly, this strain-dependent difference was not related to phenotypic variability in exploratory behavior or contextual learning nor influenced by the genetic background associated with maternal care or social conditioning. Furthermore, the SCPP phenotype was expressed early in development (postnatal day 25) and did not require a specific sex composition within the conditioning group. Finally, SCPP responses resulted from an interaction between two specifiable processes: one component of the interaction facilitated approach toward environments that were associated with social salience, whereas a second component mediated avoidance of environmental cues that predicted social isolation. We have thus identified a genetically prescribed process that can attribute value onto conditions predicting a general form of social contact. To our knowledge, this is the first definitive evidence to show that genetic variation can influence a form of social valuation not directly related to a reproductive behavior

    Critical properties of the Antiferromagnetic \RP2$ model in three dimensions

    Get PDF
    We study the behavior of the antiferromagnetic RP2^2 model in d=3d=3. The vacuum structure is analyzed in the critical and low temperature regions, paying special attention to the spontaneous symmetry breaking pattern. Near the critical point we observe a full breakdown of the O(3) symmetry of the action. Several methods for computing critical exponents are compared. We conclude that the most solid determination is obtained using a measure of the correlation length. Corrections-to-scaling are parameterized, yielding a very accurate determination of the critical coupling and a 5\% error measure of the related exponent. This is used to estimate the systematic errors due to finite-size effects.Comment: 31 pages, 10 postscript figure

    Tethered Monte Carlo: computing the effective potential without critical slowing down

    Get PDF
    We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L=1024.Comment: 32 pages, 8 eps figures. Corrected Eq. (36), which is wrong in the published pape

    The four dimensional site-diluted Ising model: a finite-size scaling study

    Get PDF
    Using finite-size scaling techniques, we study the critical properties of the site-diluted Ising model in four dimensions. We carry out a high statistics Monte Carlo simulation for several values of the dilution. The results support the perturbative scenario: there is only the Ising fixed point with large logarithmic scaling corrections. We obtain, using the Perturbative Renormalization Group, functional forms for the scaling of several observables that are in agreement with the numerical data.Comment: 30 pages, 8 postscript figure
    • 

    corecore