347 research outputs found

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft

    Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    Full text link
    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existency of the Okamoto--Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations.Comment: 13 pages, REVTeX, no figure

    El pulpeo com etanol como alternativa para incrementar la competitividade de fábricas de papel mediante su desarrollo prospectivo integrado a industrias de la caña de azúcar

    Get PDF
    La industria de la pulpa y el papel para ondular en el contexto internacional y nacional presenta debelidades tecnológicas en su proceso que afectan negativamente al medio ambiente, esto unido a las fuertes regulaciones ambientales que se han impuesto a las industrias de processos químicos obligan a los productores a buscar soluciones para hacer sus processos ambientalmente más eficientes. El proyecto está dirigido a lograr una tecnología ambientalmente compatible y económicamente competitiva de producción de papeles para ondular, para ello se parte de los beneficios que la integración material y energética de los produtos derivados de la caña de azúcar puede lograr

    Accelerated expansion of the universe driven by tachyonic matter

    Get PDF
    It is an accepted practice in cosmology to invoke a scalar field with potential V(ϕ)V(\phi) when observed evolution of the universe cannot be reconciled with theoretical prejudices. Since one function-degree-of-freedom in the expansion factor a(t)a(t) can be traded off for the function V(ϕ)V(\phi), it is {\it always} possible to find a scalar field potential which will reproduce a given evolution. I provide a recipe for determining V(ϕ)V(\phi) from a(t)a(t) in two cases:(i) Normal scalar field with Lagrangian L=(1/2)aϕaϕV(ϕ){\cal L} = (1/2)\partial_a\phi \partial^a\phi - V(\phi) used in quintessence/dark energy models. (ii) A tachyonic field with Lagrangian L=V(ϕ)[1aϕaϕ]1/2{\cal L} = -V(\phi) [ 1- \partial_a\phi \partial^a\phi]^{1/2} , motivated by recent string theoretic results. In the latter case, it is possible to have accelerated expansion of the universe during the late phase in certain cases. This suggests a string theory based interpretation of the current phase of the universe with tachyonic condensate acting as effective cosmological constant.Comment: 4 pages; uses revtex

    Can the clustered dark matter and the smooth dark energy arise from the same scalar field ?

    Full text link
    Cosmological observations suggest the existence of two different kinds of energy densities dominating at small (500 \lesssim 500 Mpc) and large (1000\gtrsim 1000 Mpc) scales. The dark matter component, which dominates at small scales, contributes Ωm0.35\Omega_m \approx 0.35 and has an equation of state p=0p=0 while the dark energy component, which dominates at large scales, contributes ΩV0.65\Omega_V \approx 0.65 and has an equation of state pρp\simeq -\rho. It is usual to postulate wimps for the first component and some form of scalar field or cosmological constant for the second component. We explore the possibility of a scalar field with a Lagrangian L =- V(\phi) \sqrt{1 - \del^i \phi \del_i \phi} acting as {\it both} clustered dark matter and smoother dark energy and having a scale dependent equation of state. This model predicts a relation between the ratio r=ρV/ρDM r = \rho_V/\rho_{\rm DM} of the energy densities of the two dark components and expansion rate nn of the universe (with a(t)tna(t) \propto t^n) in the form n=(2/3)(1+r)n = (2/3) (1+r) . For r2r \approx 2, we get n2n \approx 2 which is consistent with observations.Comment: Revised to match the published version. Minor changes and a reference adde

    Derivative corrections to the Born-Infeld action through beta-function calculations in N=2 boundary superspace

    Full text link
    We calculate the beta-functions for an open string sigma-model in the presence of a U(1) background. Passing to N=2 boundary superspace, in which the background is fully characterized by a scalar potential, significantly facilitates the calculation. Performing the calculation through three loops yields the equations of motion up to five derivatives on the fieldstrengths, which upon integration gives the bosonic sector of the effective action for a single D-brane in trivial bulk background fields through four derivatives and to all orders in alpha'. Finally, the present calculation shows that demanding ultra-violet finiteness of the non-linear sigma-model can be reformulated as the requirement that the background is a deformed stable holomorphic U(1) bundle.Comment: 25 pages, numerous figure

    The One-loop Open Superstring Massless Five-point Amplitude with the Non-Minimal Pure Spinor Formalism

    Get PDF
    We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the massless four-point amplitude. It encodes bosonic and fermionic external states in supersymmetric form and reduces to existing bosonic amplitudes when expanded in components, therefore proving their equivalence. We also show how to compute the kinematic structures involving fermionic states.Comment: 38 pages, harvmac TeX, v2: fix typo in (4.2) and add referenc

    The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout

    Get PDF
    A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built as a shashlik lead-scintillator calorimeter with wave length shifter fiber readout. Before installation it was tested and calibrated using the X5 test beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in the momentum range of 10 to 100 GeV/c were used. Results of these measurements are presented as well as a calibration monitoring system based on a 60^{60}Co source.Comment: 38 pages (Latex); 26 figures (ps

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.022630.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) 0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.77880.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) 0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.10790.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) 0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.001890.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) 0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.7113.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) 4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur
    corecore