315 research outputs found

    State observer with Round-Robin aperiodic sampled measurements with jitter

    Get PDF
    A sampled-data observer is proposed for linear continuous-time systems whose outputs are sequentially sampled via non-uniform sampling intervals repeating a prescribed Round-Robin sequence. With constant sampling intervals (jitter-free case) we provide constructive necessary and sufficient conditions for the design of an asymptotic continuous–discrete observer whose estimation error is input-to-state stable (ISS) from process disturbances and measurement noise. We use a time-varying gain depending on the elapsed time since the last measurement. With non-constant sampling intervals (jitter-tolerant case), our design conditions are only sufficient. A suspension system example shows the effectiveness of the proposed approach

    A hybrid observer for localization from noisy inertial data and sporadic position measurements

    Get PDF
    We propose an asymptotic position and speed observer for inertial navigation in the case where the position measurements are sporadic and affected by noise. We cast the problem in a hybrid dynamics framework where the continuous motion is affected by unknown continuous-time disturbances and the sporadic position measurements are affected by discrete-time noise. We show that the peculiar hybrid cascaded structure describing the estimation error dynamics is globally finite-gain exponentially ISS with gains depending intuitively on our tuning parameters. Experimental results, as well as the comparison with an Extended Kalman Filter (EKF), confirm the effectiveness of the proposed solution with an execution time two orders of magnitude faster and with a simplified observer tuning because our bounds are an explicit function of the observer tuning knob

    Localization from inertial data and sporadic position measurements

    Get PDF
    A novel estimation strategy for inertial navigation in indoor/outdoor environments is proposed with a specific attention to the sporadic nature of the non-periodic measurements. After introducing the inertial navigation model, we introduce an observer providing an asymptotic estimate of the plant state. We use a hybrid dynamical systems representation for our results, in order to provide an effective, and elegant theoretical framework. The estimation error dynamics with the proposed observer shows a peculiar cascaded interconnection of three subsystems (allowing for intuitive gain tuning), with perturbations occurring either on the jump or on the flow dynamics (depending on the specific subsystem under consideration). For this structure, we show global exponential stability of the error dynamics. Hardware-in-the-loop results confirm the effectiveness of the proposed solution

    Appendix to "Torque setpoint tracking for parallel hybrid electric vehicles using dynamic input allocation", published on IEEE Transactions on Control Systems Technology

    Get PDF
    A dynamic allocator is proposed in order to generalize a previously introduced strategy for input redundant plants, which applies to linear plants with multiple and redundant inputs. The theory is extended here to the case of multiple linear actuators, each of them with its own dynamics, acting on a nonlinear plant with strong input redundancy. In the HEV case the two redundant inputs are the ICE and EM torques and the two actuators with different dynamics are the two propulsion systems

    A control theory approach on the design of a Marx generator network

    Get PDF
    A Marx generator is a well-known type of electrical circuit first described by Erwin Otto Marx in 1924. It has been utilized in numerous applications in pulsed power with resistive or capacitive loads. To-date the vast majority of research on Marx generators designed to drive capacitive loads relied on experimentation and circuit-level modeling to guide their designs. In this paper we describe how the problem of designing a Marx generator to drive a capacitive load is reduced to that of choosing a diagonal gain matrix F that places the eigenvalues of the closed-loop matrix A+BF at specific locations. Here A is the identity matrix and B characterizes the elements of the Marx generator and depends on the number of stages N. Due to the special structure of matrix F, this formulation is a well-known problem in the area of feedback control and is referred to as the structured static state feedback problem. While the problem is difficult to solve in general, due to the specific structures of matrices A and B, various efficient numerical algorithms exist to find solutions in specific cases. In a companion paper by Buchenauer it is shown that if certain conditions hold, then setting the natural frequencies of the circuit to be harmonically related guarantees that all the energy is delivered to the load capacitor after a suitable delay. A theorem formalizing this result is presented. Earlier aspects of this research have been published in two theses

    Event-triggered transmission for linear control over communication channels

    Get PDF
    We consider an exponentially stable closed loop interconnection of a continuous linear plant and a continuous linear controller, and we study the problem of interconnecting the plant output to the controller input through a digital channel. We propose a family of "transmission-lazy" sensors whose goal is to transmit the measured plant output information as little as possible while preserving closed-loop stability. In particular, we propose two transmission policies, providing conditions on the transmission parameters. These guarantee global asymptotic stability when the plant state is available or when an estimate of the state is available (provided by a classical continuous linear observer). Moreover, under a specific condition, they guarantee global exponential stabilit

    Fault tolerant LPV control of the GTM UAV with dynamic control allocation

    Get PDF
    The aim of the paper is to present a dynamic control allocation architecture for the design and development of reconfigurable and fault-tolerant control systems in aerial vehicles. The baseline control system is designed for the nominal dynamics of the aircraft, while faults and actuator saturation limits are handled by the dynamic control allocation scheme. Coordination of these components is provided by a supervisor which re-allocates control authority based on health information, flight envelope limits and cross coupling between lateral and longitudinal motion. The monitoring components and FDI filters provide the supervisor with information about different fault operations, based on that it is able to make decisions about necessary interventions into the vehicle motions and guarantee fault-tolerant operation of the aircraft. The design of the proposed reconfigurable control algorithm is based on Linear Parameter-varying (LPV) control methods that uses a parameter dependent dynamic control allocation scheme. The design is demonstrated on the lateral axis motion of the NASA AirSTAR Flight Test Vehicle simulation model

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Book review: windup in control by P. Hippe

    No full text
    • …
    corecore