29,749 research outputs found
A Reverse-Shock Model for the Early Afterglow of GRB 050525A
The prompt localization of gamma-ray burst (GRB) 050525A by {\em Swift}
allowed the rapid follow-up of the afterglow. The observations revealed that
the optical afterglow had a major rebrightening starting at days
and ending at days, which was followed by an initial power-law
decay. Here we show that this early emission feature can be interpreted as the
reverse shock emission superposed by the forward shock emission in an
interstellar medium environment. By fitting the observed data, we further
constrain some parameters of the standard fireball-shock model: the initial
Lorentz factor of the ejecta , the magnetic energy fraction
, and the medium density . These
limits are consistent with those from the other very-early optical afterglows
observed so far. In principle, a wind environment for GRB 050525A is
disfavored.Comment: 11 pages, 1 figure, accepted for publication in Ap
Recommended from our members
Hydrodynamic Analysis of Binary Immiscible Metallurgical Flow in a Novel Mixing Process: Rheomixing
This paper presents a hydrodynamic analysis of binary immiscible metallurgical flow by a numerical simulation of the rheomixing process. The concept of multi-controll is proposed for classifying complex processes and identifying individual processes in an immiscible alloy system in order to perform simulations. A brief review of fabrication methods for immiscible alloys is given, and fluid flow aspects of a novel fabrication method – rheomixing by twin-screw extruder (TSE) are analysed. Fundamental hydrodynamic micro-mechanisms in a TSE are simulated by a piecewise linear (PLIC) volume-of-fluid (VOF) method coupled with the continuum surface force (CFS) algorithm. This revealed that continuous reorientation in the TSE process could produce fine droplets and the best mixing efficiency. It is verified that TSE is a better mixing device than single screw extruder (SSE) and can achieve finer droplets. Numerical results show good qualitative agreement with experimental results. It is concluded that rheomixing by a TSE can be successfully employed for casting immiscible engineering alloys due to its unique characteristics of reorientation and surface renewal
Recommended from our members
Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process
A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes
Behavior of X-Ray Dust Scattering and Implications for X-Ray Afterglows of Gamma-Ray Bursts
The afterglows of gamma-ray bursts (GRBs) have commonly been assumed to be
due to shocks sweeping up the circum-stellar medium. However, most GRBs have
been found in dense star-forming regions where a significant fraction of the
prompt X-ray emission can be scattered by dust grains. Here we revisit the
behavior of dust scattering of X-rays in GRBs. We find that the features of
some X-ray afterglows from minutes to days after the gamma-ray triggers are
consistent with the scattering of prompt X-ray emission from GRBs off host dust
grains. This implies that some of the observed X-ray afterglows (especially
those without sharp rising and decaying flares) could be understood with a
dust-scattering--driven emission model.Comment: ApJ, in pres
An experimental study on a motion sensing system for sports training
In sports science, motion data collected from athletes is
used to derive key performance characteristics, such as stride length
and stride frequency, that are vital coaching support information. The
sensors for use must be more accurate, must capture more vigorous
events, and have strict weight and size requirements, since they must
not themselves affect performance. These requirements mean each
wireless sensor device is necessarily resource poor and yet must be
capable of communicating a considerable amount of data, contending
for the bandwidth with other sensors on the body. This paper analyses
the results of a set of network traffic experiments that were designed
to investigate the suitability of conventional wireless motion sensing
system design � which generally assumes in-network processing - as
an efficient and scalable design for use in sports training
Advanced operator-splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients
We present an efficient method to solve numerically the equations of dissipative dynamics of the binary phase-field crystal model proposed by Elder et al. [Phys. Rev. B 75, 064107 (2007)] characterized by variable coefficients. Using the operator splitting method, the problem has been decomposed into sub-problems that can be solved more efficiently. A combination of non-trivial splitting with spectral semi-implicit solution leads to sets of algebraic equations of diagonal matrix form. Extensive testing of the method has been carried out to find the optimum balance among errors associated with time integration, spatial discretization, and splitting. We show that our method speeds up the computations by orders of magnitude relative to the conventional explicit finite difference scheme, while the costs of the pointwise implicit solution per timestep remains low. Also we show that due to its numerical dissipation, finite differencing can not compete with spectral differencing in terms of accuracy. In addition, we demonstrate that our method can efficiently be parallelized for distributed memory systems, where an excellent scalability with the number of CPUs is observed
Compressing Inertial Motion Data in Wireless Sensing Systems – An Initial Experiment
The use of wireless inertial motion sensors, such as accelerometers, for supporting medical care and sport’s training, has been under investigation in recent years. As the number of sensors (or their sampling rates) increases, compressing data at source(s) (i.e. at the sensors), i.e. reducing the quantity of data that needs to be transmitted between the on-body sensors and the remote repository, would be essential especially in a bandwidth-limited wireless environment. This paper presents a set of compression experiment results on a set of inertial motion data collected during running exercises. As a starting point, we selected a set of common compression algorithms to experiment with. Our results show that, conventional lossy compression algorithms would achieve a desirable compression ratio with an acceptable time delay. The results also show that the quality of the decompressed data is within acceptable range
Effect of intensive melt shearing on the formation of Fe-containing intermetallics in LM24 Al-alloy
Fe is one of the inevitable and detrimental impurities in aluminium alloys that degrade the mechanical performance of castings. In the present work, intensive melt shearing has been demonstrated to modify the morphology of Fe-containing intermetallic compounds by promoting the formation of compact α-Al(Fe,Mn)Si at the expense of needle-shaped β-AlFeSi, leading to an improved mechanical properties of LM24 alloy processed by MC-HPDC process. The promotion of the formation of α -Al(Fe, Mn)Si phase is resulted from the enhanced nucleation on the well dispersed MgAl 2O 4 particles in the melt. The Fe tolerance of LM24 alloy can be effectively improved by combining Mn alloying and intensive melt shearing
- …