
Abstract—The use of wireless inertial motion sensors, such 
as accelerometers, for supporting medical care and sport’s 
training, has been under investigation in recent years. As the 
number of sensors (or their sampling rates) increases, 
compressing data at source(s) (i.e. at the sensors), i.e. 
reducing the quantity of data that needs to be transmitted 
between the on-body sensors and the remote repository, 
would be essential especially in a bandwidth-limited wireless 
environment. This paper presents a set of compression 
experiment results on a set of inertial motion data collected 
during running exercises. As a starting point, we selected a 
set of common compression algorithms to experiment with. 
Our results show that, conventional lossy compression 
algorithms would achieve a desirable compression ratio with 
an acceptable time delay. The results also show that the 
quality of the decompressed data is within acceptable range. 

I. INTRODUCTION

In recent years, (human) body motion sensing for 
supporting sport’s training [1][2][8], medical care [3][4], 
computer graphic generation [5][6], and more, has been 
under investigation. Body motion sensing can be carried 
out in two distinctive ways: using either optical motion 
sensing systems [7] or Inertial Motion Sensing (IMS) 
systems. In IMS systems, in which multiple, lightweight 
inertial motion sensors [14], such as accelerometers, are 
attached to different parts of a (human) body. These 
devices capture (different types of) motion data of different 
segments of a moving body, and deliver the collected data 
(usually through wireless channels) from the sensors to a 
remote repository, at which data analysis and (long-term) 
data storage take place. As the number of on-body sensors 
(or their sampling rate) increases, the size of the collected 
motion data will increase proportionally, and will 
eventually become too large for efficient storage and/or for 
(wireless) transmission [12]. Using a commercially 
available system, the MTx sensor from xSens, as a 
reference [11]: the data rate of each sensor can reach 
240Kbps1. Compressing the data, either at the source(s) 
(i.e. at the sensors in IMS systems) or at the repository, 
therefore becomes important. In IMS systems, 
compression reduces the quantity of data that needs to be 
transmitted wirelessly between the sensors and remote 
repository, which is important for bandwidth-limited 
wireless environments. 

                                                          
1 The maximum sampling rate of a MTx is 500Hz; each sample is 60 
bytes. Thus a data rate of 240Kbps per sensor. Multiple sensors are 
needed per subject because each sensor can only sense one segment of 
the body. 

Compression of optical motion data has been 
investigated in previous research. In [9], a data-driven 
compression algorithm designed to compress motion data 
captured by optical sensing systems was described. In [10], 
another dedicatedly designed compression algorithm was 
described. However, compression of inertial motion data in 
IMS systems (which involves different data types from the 
displacement data of optical sensing systems) is yet to be 
explored. In this paper, we shall present a set of 
experiment results on inertial data compression, using the 
acceleration data that we have collected during several 
running sessions. The reason for using running data is 
because these are the most rapidly changing data of human 
motion, which contains more noise2; which we believe are 
more interesting than conventional walking steps data.  

II. BACKGROUND

A. Inertial Motion Sensor Prototype 

Figure 1 – A battery-powered MTx sensor connected to a connectBlue 
WiFi module via RS232 

We have developed a wireless inertial sensor to collect 
motion data; the sensing unit contains an MTx sensor that 
is connected via a RS232 interface to an 802.11 wireless 
interface (a connectBlue OWSPA311g module) (Figure 
1). Figure 2 shows the changes in acceleration data output 
from our sensor. Note that acceleration data oscillates 
rapidly over time.  

                                                          
2 Running movements are more rapid and harder to detect (due to much 
shorter moments of impact with ground); running data also contain more 
noise due to the small frictional movements among the contacting 
surfaces of the sensor and the subject [15].   
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Figure 2 – Changes in vertical acceleration of running data over time 

B. Existing Compression Algorithm Evaluation Criteria 
In lossless compression, the compression ratio and 

block size are the common comparison parameters. There 
are two ways to determine the accuracy of uncompressed 
data when lossy compression algorithms are used: a 
generic approach would use mathematical methods such as 
Mean Square Error (MSE); alternatively, the application 
(e.g. such as a body motion kinematics analysis) can be 
executed on the original (uncompressed) data and the 
decompressed data respectively. In this paper, we used the 
generic approach because it does not require understanding 
of body kinematics analysis (which is out-of-scope of this 
paper). Another application-specific factor is the time 
delay: this depends on how long an application can tolerate 
between the time of data collection and result 
computations; this value is user/application-specific, and 
depends on the time allowance between when an event 
happens and when the data is needed by the user. For 
example, the time delay toleratable for a long-term body 
motion medical analysis would be much longer than the 
time delay acceptable for a real-time 100m-run monitoring 
system (which would be ~10 seconds)3.

III. COMMON COMPRESSION SCHEMES

A. Assumptions and Experiment Setup 
Our investigation focuses on the compression ratio and 

the accuracy of the decompressed data: power 
consumption is out of scope of this paper. We assume that 
a reliable wireless transport protocol, such as TCP, is used 
to deliver the compressed data to a remote repository for 
decompression. This assumption is made because there is a 
need to separate the cause of lost in accuracy due to the 
lossy compression/decompression process, and the lost in 
accuracy due to network (i.e. packet) loss (see future 
work). The wireless sensor is placed on the back of the 
subject for 100m runs. The compression algorithm is run 
on a laptop with an Intel Core 2 CPU 1.83GHz and 1GB of 
RAM.

B. Results and Analysis 
Figure 3 and Figure 4 show the results when 

compressing different number of blocks of acceleration 

                                                          
3 Our interviews with coaches suggest that they would rather to observe 
the athlete’s movement directly whilst they are running. However, the 
coaches would like to visualise the computed results, such as stride 
length, stride frequencies, etc., as soon as the stride is finished. Thus, for 
a 100m run, a maximum time buffer of 10 sec can therefore be assumed.  

data4. Both lossless and lossy algorithms were used: bzip2, 
zlib, LZW, and lossy zlib. We chose these algorithms as 
our starting point of investigation because they are among 
the most popular candidates for data compression. 

Figure 3 – Compression ratio Vs block size (lossless compression) 

Figure 4 – Compression ratio Vs block size (lossy compression) 

The results in Figure 3 and Figure 4 show that the 
(average) compression ratio improves when more data are 
being compressed (i.e. using a larger block size). In Figure 
3, the best compression ratio was achieved when 
compressing 500-1200 samples in one block using 
(lossless) zlib. This would yield a time delay between 4.2 
to 10 seconds (at a sampling rate of 120Hz). However, the 
compression ratio is far from optimal (~87%). 
Furthermore, some algorithms, such as LZW, generates 
worst-off compression ratio when compressing data in 
small blocks. This is because LZW is a dictionary-based 
algorithm that is designed to encode new data based on 
previously encountered data. However, in small blocks of 
rapidly changing acceleration data (Figure 2), such feature 
cannot be explored. A better compression ratio result is 
achieved when lossy zlib was used. A compression ratio 
~53% was archived when 800 samples are compressed at 
once. This yields a time delay of ~6.67 seconds. We 
calculated the MSE value when lossy zlib was used was 
~0.0048 (±0.001); thus, the errors are marginal. However, 
because the time delay is less than optimal (i.e. optimal 
compression ratio is only achieved when compressing 
larger blocks of data), other compression algorithms 
should be investigated. 

                                                          
4  We used the default sampling rate of the MTx unit for these 
experiments i.e. 120Hz (120 samples per second).  
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IV. DATA COMPRESSION USING WAVELETS

A. Algorithm Design 

Figure 5 – Block diagram of the wavelet algorithm 

In this section, we present how the compression ratio 
would be improved should wavelet transforms are used 
[13]. We chose wavelets as our compression algorithm for 
the following experiments because they are a standard 
form of compression algorithm. The wavelet algorithm we 
used had a series of filters and methods (Figure 5). The 
signals are low-pass filtered by a Butterworth filter of 
order 4 (with a cut-off frequency of 20Hz) in order to 
reduce noise. The resultant data set is then subject to 
different wavelet transforms respectively (i.e. Haar, Linear 
Interpolation, Daubechies D4) to create different sets of 
coefficients. The number of coefficient is equivalent to the 
number of values in the data set, so that a few large(r) 
values remain to represent the magnitude of the original 
data; and small(er) values can be stored with fewer bytes. 
The last step is compression, by using the different sets of 
coefficients derived from the previous step.  

B. Results & Analysis 

Figure 6 – Compression ratio Vs block size 

Figure 6 shows the average compression ratios when 
running acceleration data are compressed using different 
wavelet transformations. The results are more optimal than 
the ones when compressing samples using lossless 
algorithms (note that the maximum number of blocks in 
Figure 6 is different from Figure 4). The differences 
between different transform algorithms are not obvious. In 
addition, the block size has little impact on the 
compression ratio. This gives the wavelets approach an 
advantage over the lossless approach we presented in the 
last section in term of a smaller time delay. The MSE in 
the signals are within acceptable range: 0.036 (±0.001), 
0.0375 (±0.001), 0.037 (±0.001) respectively for the Haar, 
Linear Interpolation, Daubechies D4 transform 
respectively.

The reasons why wavelets generate a better 
compression ratio is that they handle this type of data 
better: note that, acceleration data oscillates over time (i.e. 
similar to a sin/cosine wave pattern when plotted against 
time, Figure 2). This suggests that, the relationship 
between adjacent samples (of the same data type) should 
be – to some extend - predictable5. Wavelet transforms fit 
into our scenario better because they assume finite-length, 

                                                          
5  Consider the acceleration of the foot: the same (or very similar) 
movement would be repeated recursively throughout the run; thus, the 
acceleration data should be to a certain extend, predictable (for each 
cycle). 

oscillating waveforms: body motion, such as ground 
contact of the foot, generates finite waves that propagate 
through the body (i.e. movements can only be measured 
within a finite amount of time). In addition, wavelets 
handle sharp discontinuities (i.e. sharp peaks), such as 
sudden movement or sudden stoppage (such as when the 
toe touches ground, acceleration and gyros readings 
change rapidly, see Figure 2), better than Fourier 
transform. 

V. DATA COMPRESSION USING ADPCM 

A. Algorithm Design 

Figure 7 – Encoder block schematic 

Del
ta

Prediction
Difference 

Condition

0 PredictRange/8 0<Difference<PredictRange/4 
1 (3/8)*PredictRange PredictRange/4<=Difference<(1/2)*Pr

edictRange
2 (5/8)*PredictRange (1/2)*PredictRange<=Difference<(3/4)

*PredictRange 
Table 1 – Prediction difference and delta 

From Figure 2, some types of motions – such as 
acceleration data - oscillates over time (i.e. repeated 
movements). This feature is similar to speech waves. Thus, 
we chose Adaptive Differential Pulse Code Modulation 
(ADPCM) as our next compression algorithm to elaborate 
further this feature 6 . To improve the efficiency of 
ADPCM, we implemented a simplified version of 
ADPCM that is based on the G.721 standard. 4 bits are 
used to code one (acceleration) sample. One sample is used 
to predict the latter one. Figure 7 shows the encoder block 
schematic: the input is a sample value; the difference is the 
sample value minuses prediction; the prediction range is 
the range within which current prediction can change. 
Table 1 shows a shortlist of the methods to determine the 
prediction difference and delta. 

B. Results and Analysis 
Table 2 shows the results when compressing different 

number of acceleration samples using ADPCM with error 
control under 1%. For completeness, two different sets of 
data were used: running data and sprinting data (i.e. the 
latter involves more rapid movements). The results show 
that the compression ratio is more optimal (i.e. <45% for 
the acceleration data). The quantity of samples being 
compressed at once has little impact on the results; this 
would be advantageous for real-time (or near-real-time) 

                                                          
6 Another candidate is Differential PCM (DPCM), which encodes the 
differences between adjacent samples. ADPCM is used in this case 
because, as we have explained in an earlier section, we intend to 
determine whether the data is predictable [13]. 
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applications. We have also calculated the corresponding 
MSE, which is within acceptable range (i.e. <0.003 
(±0.001).  

Running Data Set Sprinting Data Set # of 
sampl

es
Min Max Average Min Max Avera

ge
50 20.5% 100% 44.9% 20.5% 100% 47.6

%
100 18.5% 97.2% 42.8% 18.5% 100% 45.7

%
200 17.5% 92.7% 41.3% 17.0% 100% 44.1

%
Table 2 – ADPCM compression ratio on acc. data (with error control 

<1%)

VI. CONCLUSION & FUTURE WORK
On-body wireless inertial sensing for supporting 

medical care and sports training have been investigated in 
recent years. As the number of sensors increase, there is a 
need to identify a suitable compression approach in order 
to compress data at source(s) or at the repository in order 
to reduce overheads in (wireless) transmission and/or data 
storage. This is particularly important in bandwidth limited 
environments where multiple sensors are deployed in close 
physical proximity. In this paper, we have presented a set 
of compression experiment results on the inertial motion 
data that we have collected using our wireless MTx sensor. 
Our observations are that, existing lossy compression 
algorithms can be used to compress inertial data with 
optimal compression ratio and acceptable errors. We have 
presented in this paper a set of initial experiment results on 
inertial motion data compression, we believe our work 
provides some insights for designing more efficient IMS 
systems through compression.  

As part of our future work, we intend to investigate the 
effect of packet lost in the quality of the decompressed 
data when an unreliable transmission protocol, such as 
UDP, is used. Should the results are still within an 
acceptable range, using UDP would generate less 
transmission overhead (compared to TCP), which would 
be advantageous in a wireless environment and in real-time 
systems. However, should the results are not optimal, 
applying a suitable Forward Error Correction (FEC) 
scheme would be a potential solution.  
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