
Abstract—The use of wireless inertial motion sensors, such
as accelerometers, for supporting medical care and sport’s
training, has been under investigation in recent years. As the
number of sensors (or their sampling rates) increases,
compressing data at source(s) (i.e. at the sensors), i.e.
reducing the quantity of data that needs to be transmitted
between the on-body sensors and the remote repository,
would be essential especially in a bandwidth-limited wireless
environment. This paper presents a set of compression
experiment results on a set of inertial motion data collected
during running exercises. As a starting point, we selected a
set of common compression algorithms to experiment with.
Our results show that, conventional lossy compression
algorithms would achieve a desirable compression ratio with
an acceptable time delay. The results also show that the
quality of the decompressed data is within acceptable range.

I. INTRODUCTION

In recent years, (human) body motion sensing for
supporting sport’s training [1][2][8], medical care [3][4],
computer graphic generation [5][6], and more, has been
under investigation. Body motion sensing can be carried
out in two distinctive ways: using either optical motion
sensing systems [7] or Inertial Motion Sensing (IMS)
systems. In IMS systems, in which multiple, lightweight
inertial motion sensors [14], such as accelerometers, are
attached to different parts of a (human) body. These
devices capture (different types of) motion data of different
segments of a moving body, and deliver the collected data
(usually through wireless channels) from the sensors to a
remote repository, at which data analysis and (long-term)
data storage take place. As the number of on-body sensors
(or their sampling rate) increases, the size of the collected
motion data will increase proportionally, and will
eventually become too large for efficient storage and/or for
(wireless) transmission [12]. Using a commercially
available system, the MTx sensor from xSens, as a
reference [11]: the data rate of each sensor can reach
240Kbps1. Compressing the data, either at the source(s)
(i.e. at the sensors in IMS systems) or at the repository,
therefore becomes important. In IMS systems,
compression reduces the quantity of data that needs to be
transmitted wirelessly between the sensors and remote
repository, which is important for bandwidth-limited
wireless environments.

1 The maximum sampling rate of a MTx is 500Hz; each sample is 60
bytes. Thus a data rate of 240Kbps per sensor. Multiple sensors are
needed per subject because each sensor can only sense one segment of
the body.

Compression of optical motion data has been
investigated in previous research. In [9], a data-driven
compression algorithm designed to compress motion data
captured by optical sensing systems was described. In [10],
another dedicatedly designed compression algorithm was
described. However, compression of inertial motion data in
IMS systems (which involves different data types from the
displacement data of optical sensing systems) is yet to be
explored. In this paper, we shall present a set of
experiment results on inertial data compression, using the
acceleration data that we have collected during several
running sessions. The reason for using running data is
because these are the most rapidly changing data of human
motion, which contains more noise2; which we believe are
more interesting than conventional walking steps data.

II. BACKGROUND

A. Inertial Motion Sensor Prototype

Figure 1 – A battery-powered MTx sensor connected to a connectBlue
WiFi module via RS232

We have developed a wireless inertial sensor to collect
motion data; the sensing unit contains an MTx sensor that
is connected via a RS232 interface to an 802.11 wireless
interface (a connectBlue OWSPA311g module) (Figure
1). Figure 2 shows the changes in acceleration data output
from our sensor. Note that acceleration data oscillates
rapidly over time.

2 Running movements are more rapid and harder to detect (due to much
shorter moments of impact with ground); running data also contain more
noise due to the small frictional movements among the contacting
surfaces of the sensor and the subject [15].

Compressing Inertial Motion Data in Wireless Sensing Systems – An
Initial Experiment

Lawrence Cheng, Stephen Hailes, Zhen Cheng, Fu-Yi Fan, Denis Hang, Yang Yang, Member, IEEE

978-1-4244-2253-1/08/$25 ©2008 IEEE

Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, in conjunction with
The 5th International Summer School and Symposium on Medical Devices and Biosensors
The Chinese University of Hong Kong, HKSAR, China. Jun 1-3, 2008

293

Authorized licensed use limited to: University College London. Downloaded on July 02,2010 at 13:34:14 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1677809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0 1 2 3 4 5 6 7
-100

-80

-60

-40

-20

0

20

40

Time (sec)

Acc (m/s2)

Steps

Figure 2 – Changes in vertical acceleration of running data over time

B. Existing Compression Algorithm Evaluation Criteria
In lossless compression, the compression ratio and

block size are the common comparison parameters. There
are two ways to determine the accuracy of uncompressed
data when lossy compression algorithms are used: a
generic approach would use mathematical methods such as
Mean Square Error (MSE); alternatively, the application
(e.g. such as a body motion kinematics analysis) can be
executed on the original (uncompressed) data and the
decompressed data respectively. In this paper, we used the
generic approach because it does not require understanding
of body kinematics analysis (which is out-of-scope of this
paper). Another application-specific factor is the time
delay: this depends on how long an application can tolerate
between the time of data collection and result
computations; this value is user/application-specific, and
depends on the time allowance between when an event
happens and when the data is needed by the user. For
example, the time delay toleratable for a long-term body
motion medical analysis would be much longer than the
time delay acceptable for a real-time 100m-run monitoring
system (which would be ~10 seconds)3.

III. COMMON COMPRESSION SCHEMES

A. Assumptions and Experiment Setup
Our investigation focuses on the compression ratio and

the accuracy of the decompressed data: power
consumption is out of scope of this paper. We assume that
a reliable wireless transport protocol, such as TCP, is used
to deliver the compressed data to a remote repository for
decompression. This assumption is made because there is a
need to separate the cause of lost in accuracy due to the
lossy compression/decompression process, and the lost in
accuracy due to network (i.e. packet) loss (see future
work). The wireless sensor is placed on the back of the
subject for 100m runs. The compression algorithm is run
on a laptop with an Intel Core 2 CPU 1.83GHz and 1GB of
RAM.

B. Results and Analysis
Figure 3 and Figure 4 show the results when

compressing different number of blocks of acceleration

3 Our interviews with coaches suggest that they would rather to observe
the athlete’s movement directly whilst they are running. However, the
coaches would like to visualise the computed results, such as stride
length, stride frequencies, etc., as soon as the stride is finished. Thus, for
a 100m run, a maximum time buffer of 10 sec can therefore be assumed.

data4. Both lossless and lossy algorithms were used: bzip2,
zlib, LZW, and lossy zlib. We chose these algorithms as
our starting point of investigation because they are among
the most popular candidates for data compression.

Figure 3 – Compression ratio Vs block size (lossless compression)

Figure 4 – Compression ratio Vs block size (lossy compression)

The results in Figure 3 and Figure 4 show that the
(average) compression ratio improves when more data are
being compressed (i.e. using a larger block size). In Figure
3, the best compression ratio was achieved when
compressing 500-1200 samples in one block using
(lossless) zlib. This would yield a time delay between 4.2
to 10 seconds (at a sampling rate of 120Hz). However, the
compression ratio is far from optimal (~87%).
Furthermore, some algorithms, such as LZW, generates
worst-off compression ratio when compressing data in
small blocks. This is because LZW is a dictionary-based
algorithm that is designed to encode new data based on
previously encountered data. However, in small blocks of
rapidly changing acceleration data (Figure 2), such feature
cannot be explored. A better compression ratio result is
achieved when lossy zlib was used. A compression ratio
~53% was archived when 800 samples are compressed at
once. This yields a time delay of ~6.67 seconds. We
calculated the MSE value when lossy zlib was used was
~0.0048 (±0.001); thus, the errors are marginal. However,
because the time delay is less than optimal (i.e. optimal
compression ratio is only achieved when compressing
larger blocks of data), other compression algorithms
should be investigated.

4 We used the default sampling rate of the MTx unit for these
experiments i.e. 120Hz (120 samples per second).

294

Authorized licensed use limited to: University College London. Downloaded on July 02,2010 at 13:34:14 UTC from IEEE Xplore. Restrictions apply.

IV. DATA COMPRESSION USING WAVELETS

A. Algorithm Design

Figure 5 – Block diagram of the wavelet algorithm

In this section, we present how the compression ratio
would be improved should wavelet transforms are used
[13]. We chose wavelets as our compression algorithm for
the following experiments because they are a standard
form of compression algorithm. The wavelet algorithm we
used had a series of filters and methods (Figure 5). The
signals are low-pass filtered by a Butterworth filter of
order 4 (with a cut-off frequency of 20Hz) in order to
reduce noise. The resultant data set is then subject to
different wavelet transforms respectively (i.e. Haar, Linear
Interpolation, Daubechies D4) to create different sets of
coefficients. The number of coefficient is equivalent to the
number of values in the data set, so that a few large(r)
values remain to represent the magnitude of the original
data; and small(er) values can be stored with fewer bytes.
The last step is compression, by using the different sets of
coefficients derived from the previous step.

B. Results & Analysis

Figure 6 – Compression ratio Vs block size

Figure 6 shows the average compression ratios when
running acceleration data are compressed using different
wavelet transformations. The results are more optimal than
the ones when compressing samples using lossless
algorithms (note that the maximum number of blocks in
Figure 6 is different from Figure 4). The differences
between different transform algorithms are not obvious. In
addition, the block size has little impact on the
compression ratio. This gives the wavelets approach an
advantage over the lossless approach we presented in the
last section in term of a smaller time delay. The MSE in
the signals are within acceptable range: 0.036 (±0.001),
0.0375 (±0.001), 0.037 (±0.001) respectively for the Haar,
Linear Interpolation, Daubechies D4 transform
respectively.

The reasons why wavelets generate a better
compression ratio is that they handle this type of data
better: note that, acceleration data oscillates over time (i.e.
similar to a sin/cosine wave pattern when plotted against
time, Figure 2). This suggests that, the relationship
between adjacent samples (of the same data type) should
be – to some extend - predictable5. Wavelet transforms fit
into our scenario better because they assume finite-length,

5 Consider the acceleration of the foot: the same (or very similar)
movement would be repeated recursively throughout the run; thus, the
acceleration data should be to a certain extend, predictable (for each
cycle).

oscillating waveforms: body motion, such as ground
contact of the foot, generates finite waves that propagate
through the body (i.e. movements can only be measured
within a finite amount of time). In addition, wavelets
handle sharp discontinuities (i.e. sharp peaks), such as
sudden movement or sudden stoppage (such as when the
toe touches ground, acceleration and gyros readings
change rapidly, see Figure 2), better than Fourier
transform.

V. DATA COMPRESSION USING ADPCM

A. Algorithm Design

Figure 7 – Encoder block schematic

Del
ta

Prediction
Difference

Condition

0 PredictRange/8 0<Difference<PredictRange/4
1 (3/8)*PredictRange PredictRange/4<=Difference<(1/2)*Pr

edictRange
2 (5/8)*PredictRange (1/2)*PredictRange<=Difference<(3/4)

*PredictRange
Table 1 – Prediction difference and delta

From Figure 2, some types of motions – such as
acceleration data - oscillates over time (i.e. repeated
movements). This feature is similar to speech waves. Thus,
we chose Adaptive Differential Pulse Code Modulation
(ADPCM) as our next compression algorithm to elaborate
further this feature 6 . To improve the efficiency of
ADPCM, we implemented a simplified version of
ADPCM that is based on the G.721 standard. 4 bits are
used to code one (acceleration) sample. One sample is used
to predict the latter one. Figure 7 shows the encoder block
schematic: the input is a sample value; the difference is the
sample value minuses prediction; the prediction range is
the range within which current prediction can change.
Table 1 shows a shortlist of the methods to determine the
prediction difference and delta.

B. Results and Analysis
Table 2 shows the results when compressing different

number of acceleration samples using ADPCM with error
control under 1%. For completeness, two different sets of
data were used: running data and sprinting data (i.e. the
latter involves more rapid movements). The results show
that the compression ratio is more optimal (i.e. <45% for
the acceleration data). The quantity of samples being
compressed at once has little impact on the results; this
would be advantageous for real-time (or near-real-time)

6 Another candidate is Differential PCM (DPCM), which encodes the
differences between adjacent samples. ADPCM is used in this case
because, as we have explained in an earlier section, we intend to
determine whether the data is predictable [13].

295

Authorized licensed use limited to: University College London. Downloaded on July 02,2010 at 13:34:14 UTC from IEEE Xplore. Restrictions apply.

applications. We have also calculated the corresponding
MSE, which is within acceptable range (i.e. <0.003
(±0.001).

Running Data Set Sprinting Data Set # of
sampl

es
Min Max Average Min Max Avera

ge
50 20.5% 100% 44.9% 20.5% 100% 47.6

%
100 18.5% 97.2% 42.8% 18.5% 100% 45.7

%
200 17.5% 92.7% 41.3% 17.0% 100% 44.1

%
Table 2 – ADPCM compression ratio on acc. data (with error control

<1%)

VI. CONCLUSION & FUTURE WORK
On-body wireless inertial sensing for supporting

medical care and sports training have been investigated in
recent years. As the number of sensors increase, there is a
need to identify a suitable compression approach in order
to compress data at source(s) or at the repository in order
to reduce overheads in (wireless) transmission and/or data
storage. This is particularly important in bandwidth limited
environments where multiple sensors are deployed in close
physical proximity. In this paper, we have presented a set
of compression experiment results on the inertial motion
data that we have collected using our wireless MTx sensor.
Our observations are that, existing lossy compression
algorithms can be used to compress inertial data with
optimal compression ratio and acceptable errors. We have
presented in this paper a set of initial experiment results on
inertial motion data compression, we believe our work
provides some insights for designing more efficient IMS
systems through compression.

As part of our future work, we intend to investigate the
effect of packet lost in the quality of the decompressed
data when an unreliable transmission protocol, such as
UDP, is used. Should the results are still within an
acceptable range, using UDP would generate less
transmission overhead (compared to TCP), which would
be advantageous in a wireless environment and in real-time
systems. However, should the results are not optimal,
applying a suitable Forward Error Correction (FEC)
scheme would be a potential solution.

ACKNOWLEDGEMENTS

This paper describes work undertaken in the context of
the EPSRC-funded SEnsing for Sport And Managed
Exercise (SESAME) project (EP/D076943).

REFERENCES

[1] The SEnsing for Sport And Managed Exercise (SESAME) project,
http://www.sesame.ucl.ac.uk

[2] S. Armstrong, “Wireless Connectivity for Health and Sports
Monitoring: a review”, in Proceedings of the British Journal of
Sports Medicine 2007, pp. 285-289.

[3] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V.
Shnayder, G. Mainland, S. Moulton, M. Welsh, “Sensor Networks
for Emergency Reponse: Challeneges and Opportunities”, in
Special Issue on Pervasive Computing for First Response, IEEE
Pervasice Computing, Oct-Dec 2004.

[4] T. Tamura, “Wearable Accelerometer in Clinical Use”, in
Proceedings of the 27th IEEE Internal Conference of the
Engineering in Medicine and Biology Society (EMBS), Shanghai,
China, Sep 2005, pp. 7165-7166.

[5] K. Grochow, S. Martin, A. Hertzmann, Z. Popovic, “Style-based
Inverse Kinematics”, in Proceedings of ACM Transactions on
Graphics (SIGGRAPH), August 2004, pp. 522-531.

[6] A. safonova, J. Hodgins, N. Pollard, “Synthesizing Physically
Realistic Human Motion in Low-dimensional, Behaviour-specific
Spaces”, in Proceedings of ACM Transactions on Graphics
(SIGGRAPH), August 2004, pp. 514-521.

[7] The Qualisys Motion Capture Systems, http://www.qualisys.com/
[8] L. Cheng, S. Hailes, “An Experimental Study on a Motion Sensing

System for Sports Training”, short paper in the Proceedings of the
5th European Confernece on Wireless Sensor Networks (EWSN),
Bologna, Italy, Feb 2008.

[9] G. Liu, L. McMillan, “Compression of Human Motion Data
Sequences”, in Proceedings of the 3rd International Symposium on
3D Data Processing, Visualsation, and Transmission (3DPVT),
2006, pp. 248-255.

[10] H. Ye, J. Gong, “Motion Data Management of 3D Moving
Objects”, in Proceedings of IEEE Geoscience and Remote Sensing
Symposium (IGARSS), July 2003, pp. 3736-3738.

[11] The MTx System, xSens Motion Technologies,
http://www.xsens.com

[12] N. Kimura, S. Latifi, “A Survey on Data Compression in Wireless
Sensor Networks”, in Proceedings of the International Conference
on Information Technology: Coding and Computing (ITCC), April
2005, pp. 8-13.

[13] S. Nalatwad, M. Devetsikiotis, “A Framework for Adaptive
Wavelet Prediction in Self-Sizing Networks”, in Proceedings of the
39th Annual Symposium on Simulation (ANSS), 2006, pp. 10-17.

[14] A. Christian, J. Healey, “Gathering Motion Data Using
Featherweight Sensors and TCP/IP over 802.15.4”, HP Technical
Report, HPL-2005-188, Oct 2005.

[15] S. Nakazawa, T. Ishihara, H. Inooka, “Real-time Algorithms for
Estimating Jerk Signals from Noisy Acceleration Data”, in
International Journal of Applied Electromagnetics and Mechanics,
Vol. 18 (2003), pp. 149-163.

296

Authorized licensed use limited to: University College London. Downloaded on July 02,2010 at 13:34:14 UTC from IEEE Xplore. Restrictions apply.

