633 research outputs found

    On the Complexity of Searching in Trees: Average-case Minimization

    Full text link
    We focus on the average-case analysis: A function w : V -> Z+ is given which defines the likelihood for a node to be the one marked, and we want the strategy that minimizes the expected number of queries. Prior to this paper, very little was known about this natural question and the complexity of the problem had remained so far an open question. We close this question and prove that the above tree search problem is NP-complete even for the class of trees with diameter at most 4. This results in a complete characterization of the complexity of the problem with respect to the diameter size. In fact, for diameter not larger than 3 the problem can be shown to be polynomially solvable using a dynamic programming approach. In addition we prove that the problem is NP-complete even for the class of trees of maximum degree at most 16. To the best of our knowledge, the only known result in this direction is that the tree search problem is solvable in O(|V| log|V|) time for trees with degree at most 2 (paths). We match the above complexity results with a tight algorithmic analysis. We first show that a natural greedy algorithm attains a 2-approximation. Furthermore, for the bounded degree instances, we show that any optimal strategy (i.e., one that minimizes the expected number of queries) performs at most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum degree of T. We combine this result with a non-trivial exponential time algorithm to provide an FPTAS for trees with bounded degree

    Detection of Complex Networks Modularity by Dynamical Clustering

    Full text link
    Based on cluster de-synchronization properties of phase oscillators, we introduce an efficient method for the detection and identification of modules in complex networks. The performance of the algorithm is tested on computer generated and real-world networks whose modular structure is already known or has been studied by means of other methods. The algorithm attains a high level of precision, especially when the modular units are very mixed and hardly detectable by the other methods, with a computational effort O(KN){\cal O}(KN) on a generic graph with NN nodes and KK links.Comment: 5 pages, 2 figures. Version accepted for publication on PRE Rapid Communications: figures changed and text adde

    Direct evaluation of pure graph state entanglement

    Full text link
    We address the question of quantifying entanglement in pure graph states. Evaluation of multipartite entanglement measures is extremely hard for most pure quantum states. In this paper we demonstrate how solving one problem in graph theory, namely the identification of maximum independent set, allows us to evaluate three multipartite entanglement measures for pure graph states. We construct the minimal linear decomposition into product states for a large group of pure graph states, allowing us to evaluate the Schmidt measure. Furthermore we show that computation of distance-like measures such as relative entropy of entanglement and geometric measure becomes tractable for these states by explicit construction of closest separable and closest product states respectively. We show how these separable states can be described using stabiliser formalism as well as PEPs-like construction. Finally we discuss the way in which introducing noise to the system can optimally destroy entanglement.Comment: 23 pages, 9 figure

    Secure and linear cryptosystems using error-correcting codes

    Full text link
    A public-key cryptosystem, digital signature and authentication procedures based on a Gallager-type parity-check error-correcting code are presented. The complexity of the encryption and the decryption processes scale linearly with the size of the plaintext Alice sends to Bob. The public-key is pre-corrupted by Bob, whereas a private-noise added by Alice to a given fraction of the ciphertext of each encrypted plaintext serves to increase the secure channel and is the cornerstone for digital signatures and authentication. Various scenarios are discussed including the possible actions of the opponent Oscar as an eavesdropper or as a disruptor

    Enhancing Parallel Cooperative Trajectory Based Metaheuristics with Path Relinking

    Get PDF
    This paper proposes a novel algorithm combining path relinking with a set of cooperating trajectory based parallel algorithms to yield a new metaheuristic of enhanced search features. Algorithms based on the exploration of the neighborhood of a single solution, like simulated annealing (SA), have offered accurate results for a large number of real-world problems in the past. Because of their trajectory based nature, some advanced models such as the cooperative one are competitive in academic problems, but still show many limitations in addressing large scale instances. In addition, the field of parallel models for trajectory methods has not deeply been studied yet (at least in comparison with parallel population based models). In this work, we propose a new hybrid algorithm which improves cooperative single solution techniques by using path relinking, allowing both to reduce the global execution time and to improve the efficacy of the method. We test here this new model using a large benchmark of instances of two well-known NP-hard problems: MAXSAT and QAP, with competitive results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density

    Full text link
    The classical monomer-dimer model in two-dimensional lattices has been shown to belong to the \emph{``#P-complete''} class, which indicates the problem is computationally ``intractable''. We use exact computational method to investigate the number of ways to arrange dimers on m×nm \times n two-dimensional rectangular lattice strips with fixed dimer density ρ\rho. For any dimer density 0<ρ<10 < \rho < 1, we find a logarithmic correction term in the finite-size correction of the free energy per lattice site. The coefficient of the logarithmic correction term is exactly -1/2. This logarithmic correction term is explained by the newly developed asymptotic theory of Pemantle and Wilson. The sequence of the free energy of lattice strips with cylinder boundary condition converges so fast that very accurate free energy f2(ρ)f_2(\rho) for large lattices can be obtained. For example, for a half-filled lattice, f2(1/2)=0.633195588930f_2(1/2) = 0.633195588930, while f2(1/4)=0.4413453753046f_2(1/4) = 0.4413453753046 and f2(3/4)=0.64039026f_2(3/4) = 0.64039026. For ρ<0.65\rho < 0.65, f2(ρ)f_2(\rho) is accurate at least to 10 decimal digits. The function f2(ρ)f_2(\rho) reaches the maximum value f2(ρ)=0.662798972834f_2(\rho^*) = 0.662798972834 at ρ=0.6381231\rho^* = 0.6381231, with 11 correct digits. This is also the \md constant for two-dimensional rectangular lattices. The asymptotic expressions of free energy near close packing are investigated for finite and infinite lattice widths. For lattices with finite width, dependence on the parity of the lattice width is found. For infinite lattices, the data support the functional form obtained previously through series expansions.Comment: 15 pages, 5 figures, 5 table

    The Firefighter Problem: A Structural Analysis

    Get PDF
    We consider the complexity of the firefighter problem where b>=1 firefighters are available at each time step. This problem is proved NP-complete even on trees of degree at most three and budget one (Finbow et al.,2007) and on trees of bounded degree b+3 for any fixed budget b>=2 (Bazgan et al.,2012). In this paper, we provide further insight into the complexity landscape of the problem by showing that the pathwidth and the maximum degree of the input graph govern its complexity. More precisely, we first prove that the problem is NP-complete even on trees of pathwidth at most three for any fixed budget b>=1. We then show that the problem turns out to be fixed parameter-tractable with respect to the combined parameter "pathwidth" and "maximum degree" of the input graph

    Optimal Location of Sources in Transportation Networks

    Full text link
    We consider the problem of optimizing the locations of source nodes in transportation networks. A reduction of the fraction of surplus nodes induces a glassy transition. In contrast to most constraint satisfaction problems involving discrete variables, our problem involves continuous variables which lead to cavity fields in the form of functions. The one-step replica symmetry breaking (1RSB) solution involves solving a stable distribution of functionals, which is in general infeasible. In this paper, we obtain small closed sets of functional cavity fields and demonstrate how functional recursions are converted to simple recursions of probabilities, which make the 1RSB solution feasible. The physical results in the replica symmetric (RS) and the 1RSB frameworks are thus derived and the stability of the RS and 1RSB solutions are examined.Comment: 38 pages, 18 figure

    Optimisation problems and replica symmetry breaking in finite connectivity spin-glasses

    Full text link
    A formalism capable of handling the first step of hierarchical replica symmetry breaking in finite-connectivity models is introduced. The emerging order parameter is claimed to be a probability distribution over the space of field distributions (or, equivalently magnetisation distributions) inside the cluster of states. The approach is shown to coincide with the previous works in the replica symmetric case and in the two limit cases m=0,1 where m is Parisi's break-point. As an application to the study of optimization problems, the ground-state properties of the random 3-Satisfiability problem are investigated and we present a first RSB solution improving replica symmetric results.Comment: 16 pages Revtex file, 1 figure; amended version with two new appendices; to be published in J.Phys.

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest
    corecore