1,408 research outputs found

    Reformulation of the Stochastic Potential Switching Algorithm and a Generalized Fourtuin-Kasteleyn Representation

    Full text link
    A new formulation of the stochastic potential switching algorithm is presented. This reformulation naturally leads us to a generalized Fourtuin-Kasteleyn representation of the partition function Z. A formula for internal energy E and that of heat capacity C are derived from derivatives of the partition function. We also derive a formula for the exchange probability in the replica exchange Monte Carlo method. By combining the formulae with the Stochastic Cutoff method, we can greatly reduce the computational time to perform internal energy and heat capacity measurements and the replica exchange Monte Carlo method in long-range interacting systems. Numerical simulations in three dimensional magnetic dipolar systems show the validity and efficiency of the method.Comment: 11 pages, 6 figures, to appear in PR

    Stochastic Cutoff Method for Long-Range Interacting Systems

    Full text link
    A new Monte-Carlo method for long-range interacting systems is presented. This method consists of eliminating interactions stochastically with the detailed balance condition satisfied. When a pairwise interaction VijV_{ij} of a NN-particle system decreases with the distance as rij−αr_{ij}^{-\alpha}, computational time per one Monte Carlo step is O(N){\cal O}(N) for α≄d\alpha \ge d and O(N2−α/d){\cal O}(N^{2-\alpha/d}) for α<d\alpha < d, where dd is the spatial dimension. We apply the method to a two-dimensional magnetic dipolar system. The method enables us to treat a huge system of 2562256^2 spins with reasonable computational time, and reproduces a circular order originated from long-range dipolar interactions.Comment: 18 pages, 9 figures, 1 figure and 1 reference are adde

    An Arbitrary Curvilinear Coordinate Method for Particle-In-Cell Modeling

    Full text link
    A new approach to the kinetic simulation of plasmas in complex geometries, based on the Particle-in- Cell (PIC) simulation method, is explored. In the two dimensional (2d) electrostatic version of our method, called the Arbitrary Curvilinear Coordinate PIC (ACC-PIC) method, all essential PIC operations are carried out in 2d on a uniform grid on the unit square logical domain, and mapped to a nonuniform boundary-fitted grid on the physical domain. As the resulting logical grid equations of motion are not separable, we have developed an extension of the semi-implicit Modified Leapfrog (ML) integration technique to preserve the symplectic nature of the logical grid particle mover. A generalized, curvilinear coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid is also developed. By our formulation, we compute the plasma charge density on the logical grid based on the particles' positions on the logical domain. That is, the plasma particles are weighted to the uniform logical grid and the self-consistent mean electrostatic fields obtained from the solution of the logical grid Poisson equation are interpolated to the particle positions on the logical grid. This process eliminates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid and allows us to run the PIC method on arbitrary boundary-fitted meshes.Comment: Submitted to Computational Science & Discovery December 201

    A new class of semiclassical wave function uniformizations

    Get PDF
    We present a new semiclassical technique which relies on replacing complicated classical manifold structure with simpler manifolds, which are then evaluated by the usual semiclassical rules. Under circumstances where the original manifold structure gives poor or useless results semiclassically the replacement manifolds can yield remarkable accuracy. We give several working examples to illustrate the theory presented here.Comment: 12 pages (incl. 12 figures

    The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    Get PDF
    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock

    Mars sample return – a proposed mission campaign whose time is now

    Get PDF
    The analysis in Earth laboratories of samples that could be returned from Mars is of extremely high interest to the international Mars exploration community. IMEWG (the International Mars Exploration Working Group) has been evaluating options, by means of a working group referred to as iMOST, to refine the scientific objectives of MSR. The Mars 2020 sample-caching rover mission is the first component of the Mars Sample Return campaign, so its existence constitutes a critical opportunity. Finally, on April 26, 2018, NASA and ESA signed a Statement of Intent to work together to formulate, by the end of 2019, a joint plan for the retrieval missions that are essential to the completion of the MSR Campaign. All of these converged April 25-27, 2018 in Berlin, Germany, at the 2nd International Mars Sample Return Conference

    Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    Full text link
    The large number of stars for which uninterrupted high-precision photometric timeseries data are being collected with \textit{Kepler} and CoRoT initiated the development of automated methods to analyse the stochastically excited oscillations in main-sequence, subgiant and red-giant stars. Aims: We investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during the first four months of operation. These data have been analysed by different groups using already published methods and the results are compared. We also performed simulations to investigate the uncertainty on the resulting parameters due to different realizations of the stochastic signal. Results: We obtain results for the frequency of maximum oscillation power (nu_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions used here. The uncertainties for nu_max and due to differences in realization noise are not negligible and should be taken into account when using these results for stellar modelling.Comment: 11 pages, 9 Figures and 7 tables, accepted for publication in Astronomy and Astrophysic

    Optical properties of structurally-relaxed Si/SiO2_2 superlattices: the role of bonding at interfaces

    Full text link
    We have constructed microscopic, structurally-relaxed atomistic models of Si/SiO2_2 superlattices. The structural distortion and oxidation-state characteristics of the interface Si atoms are examined in detail. The role played by the interface Si suboxides in raising the band gap and producing dispersionless energy bands is established. The suboxide atoms are shown to generate an abrupt interface layer about 1.60 \AA thick. Bandstructure and optical-absorption calculations at the Fermi Golden rule level are used to demonstrate that increasing confinement leads to (a) direct bandgaps (b) a blue shift in the spectrum, and (c) an enhancement of the absorption intensity in the threshold-energy region. Some aspects of this behaviour appear not only in the symmetry direction associated with the superlattice axis, but also in the orthogonal plane directions. We conclude that, in contrast to Si/Ge, Si/SiO2_2 superlattices show clear optical enhancement and a shift of the optical spectrum into the region useful for many opto-electronic applications.Comment: 11 pages, 10 figures (submitted to Phys. Rev. B

    Inclusive School Community: Why is it so Complex?

    Get PDF
    This paper addresses the question: why is it so hard for school communities to respond to diversity in learners, staff and parents in inclusive ways? The authors draw on theory and recent professional experience in Queensland, Australia, to offer four guiding principles that address traditional assumptions about learning that result in inequality of opportunity and outcomes for students. The authors suggest these principles to support the development of a more inclusive school community: (1) develop a learning community incorporating a critical friend; (2) value and collaborate with parents and the broader community; (3) engage students as citizens in school review and develop¬ment; and (4) support teachers’ critical engagement with inclusive ideals and practices. The authors describe how the principles can work in concert in a school community

    Novel biomarkers to detect occult cancer in patients with unprovoked venous thromboembolism: Rationale and design of the PLATO-VTE study

    Get PDF
    Occult cancer is detected in about 5% of patients with unprovoked venous thromboembolism (VTE) in the 12 months following VTE diagnosis. Current guidance suggests conducting a ‘limited’ cancer screening in these patients, consisting of medical history taking, physical examination, routine blood tests, chest X-ray, and age- and gender-specific testing, over full-body imaging. However, almost half of underlying cancers remain undetected with this approach. Blood-based liquid biopsies may provide an attractive addition or alternative to current cancer screening strategies, with a potentially higher detection rate while avoiding radiation or invasive testing. The PLATO-VTE study is an ongoing, investigator-initiated, multinational, prospective, observational cohort study comparing the sensitivity of novel biomarkers for detecting cancer with that of limited cancer screening in the setting of unprovoked VTE. Patients older than 40 years with a first episode of unprovoked VTE are eligible, while those with major and minor transient provoking risk factors for VTE are excluded. Patients undergo standard-of-care ‘limited’ cancer screening and are followed for 12 months for the occurrence of cancer. A blood sample for biomarker analysis is drawn within 10 days; a second sample is taken at 3 months to assess test result consistency over time. Three biomarkers are assessed: platelet mRNA, circulating tumor DNA, and plasma proteomics analysis. The sensitivity and predictive value of the biomarkers at baseline will be compared with those of limited screening. The results from the PLATO-VTE study may lead to reconsider current approaches for cancer screening in patients with unprovoked VTE
    • 

    corecore